Comparative Analysis of Automated Machine Learning and Optimized Conventional Machine Learning for Concrete’s Uniaxial Compressive Strength Prediction

抗压强度 人工智能 计算机科学 机器学习 结构工程 材料科学 复合材料 工程类
作者
Chukwuemeka Daniel
出处
期刊:Advances in Civil Engineering [Hindawi Limited]
卷期号:2024 (1) 被引量:4
标识
DOI:10.1155/adce/3403677
摘要

The uniaxial compressive strength (UCS) is a crucial mechanical property influenced by factors such as concrete constituents and curing days. Concrete’s UCS poses significant challenges for accurate estimation. Traditional methods are time‐intensive, expensive, and may struggle to account for the impact of various interacting factors. This study pioneers the application of automated machine learning (AutoML) and conventional ML techniques to unravel the intricate relationships between the UCS and six factors. A robust dataset comprising 844 experimental results was used to train and evaluate the models. The input parameters for the models were: the curing days, amount of plasticizer, and quantity of cement, fine and coarse aggregates (CAs). Among the models assessed, the AutoGluon model stands out for its superior prediction accuracy and result interpretability. AutoGluon showed exceptional performance when the predictions were compared with experimental data. This model yielded the lowest root mean square error (RMSE) of 1.0830 MPa and the highest coefficient of determination ( R 2 ) of 0.9493. Analysis of feature importance indicates that curing days of concrete is the most influential parameter for this prediction task. The study demonstrates that the AutoGluon model reliably and robustly estimates concrete’s UCS. Additionally, they are more efficient to train than conventional ML models, eliminating the need for the laborious and time‐consuming process of hyperparameter tuning. Specifically, in assessing the UCS of concrete AutoGluon had 0.64%–1.82% and 0.07%–0.2% more superior RMSE and R 2 than the conventional ML models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AAA完成签到,获得积分10
刚刚
刚刚
1秒前
Owen应助反暗采纳,获得10
2秒前
4秒前
4秒前
4秒前
6秒前
lastsnow完成签到 ,获得积分10
6秒前
聪慧的哈吉米完成签到 ,获得积分10
7秒前
小迪完成签到,获得积分10
8秒前
云间宿完成签到 ,获得积分10
9秒前
香蕉诗蕊举报jiangli求助涉嫌违规
9秒前
zeqian完成签到 ,获得积分10
13秒前
15秒前
15秒前
19秒前
19秒前
左丘秋荷完成签到 ,获得积分10
20秒前
xde145完成签到,获得积分10
21秒前
蔺忘幽发布了新的文献求助10
23秒前
舒适小笼包完成签到,获得积分10
23秒前
minuxSCI完成签到,获得积分10
23秒前
23秒前
29秒前
科研通AI6应助yyanxuemin919采纳,获得10
29秒前
dyyisash完成签到 ,获得积分10
30秒前
反暗发布了新的文献求助10
30秒前
学术黄金完成签到,获得积分10
31秒前
33秒前
阔达可燕关注了科研通微信公众号
34秒前
34秒前
LL发布了新的文献求助10
34秒前
蔺忘幽完成签到,获得积分10
34秒前
34秒前
35秒前
37秒前
科研版小鱼关注了科研通微信公众号
38秒前
38秒前
chemstation发布了新的文献求助10
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563671
求助须知:如何正确求助?哪些是违规求助? 4648553
关于积分的说明 14685433
捐赠科研通 4590501
什么是DOI,文献DOI怎么找? 2518611
邀请新用户注册赠送积分活动 1491204
关于科研通互助平台的介绍 1462478