已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Hierarchical graph representation learning with multi-granularity features for anti-cancer drug response prediction

粒度 计算机科学 人工智能 图形 代表(政治) 机器学习 理论计算机科学 程序设计语言 政治 政治学 法学
作者
Wei Peng,Jiangzhen Lin,Wei Dai,Ning Yu,Jianxin Wang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/jbhi.2024.3492806
摘要

Patients with the same type of cancer often respond differently to identical drug treatments due to unique genomic traits. Accurately predicting a patient's response to drug is crucial in guiding treatment decisions, alleviating patient suffering, and improving cancer prognosis. Current computational methods utilize deep learning models trained on extensive drug screening data to predict anti-cancer drug responses based on features of cell lines and drugs. However, the interaction between cell lines and drugs is a complex biological process involving interactions across various levels, from internal cellular and drug structures to the external interactions among different molecules.To address this complexity, we propose a novel Hierarchical graph representation Learning with Multi-Granularity features (HLMG) algorithm for predicting anti-cancer drug responses. The HLMG algorithm combines features at two granularities: the overall gene expression and pathway substructures of cell lines, and the overall molecular fingerprints and substructures of drugs. Subsequently, it constructs a heterogeneous graph including cell lines, drugs, known cell line-drug responses, and the associations between similar cell lines and similar drugs. Through a graph convolutional network model, the HLMG learns the final cell line and drug representations by aggregating features of their multi-level neighbor in the heterogeneous graph. The multi-level neighbors consist of the node self, directly related drugs/cell lines, and indirectly related similar drugs/cell lines. Finally, a linear correlation coefficient decoder is employed to reconstruct the cell line-drug correlation matrix to predict anti-cancer drug responses. Our model was tested on the Genomics of Drug Sensitivity in Cancer (GDSC) and the Cancer Cell Line Encyclopedia (CCLE) databases. Results indicate that HLMG outperforms other state-of-the-art methods in accurately predicting anti-cancer drug responses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星空发布了新的文献求助10
2秒前
铜W完成签到,获得积分20
3秒前
李不斜发布了新的文献求助10
5秒前
5秒前
健康的鹤完成签到 ,获得积分10
6秒前
7秒前
刘龙强完成签到,获得积分10
8秒前
十一完成签到,获得积分10
9秒前
zfm发布了新的文献求助10
10秒前
星空完成签到 ,获得积分10
11秒前
搜集达人应助HKQ采纳,获得10
11秒前
CipherSage应助hello小鹿采纳,获得10
12秒前
12秒前
13秒前
碧蓝的曼卉完成签到 ,获得积分10
15秒前
15秒前
沉钧发布了新的文献求助10
16秒前
茶梨发布了新的文献求助20
17秒前
18秒前
铜W发布了新的文献求助10
21秒前
qingshan完成签到,获得积分10
22秒前
HKQ发布了新的文献求助10
23秒前
zfm完成签到,获得积分10
24秒前
无月完成签到 ,获得积分10
25秒前
後zgw完成签到,获得积分10
25秒前
如意的耳机完成签到 ,获得积分10
27秒前
星空完成签到,获得积分20
28秒前
辛勤的喉完成签到 ,获得积分10
29秒前
我想开兰博完成签到 ,获得积分10
30秒前
31秒前
微醺钓青鱼完成签到 ,获得积分10
32秒前
lemon完成签到 ,获得积分10
32秒前
沉钧完成签到,获得积分10
32秒前
arui完成签到 ,获得积分10
33秒前
大模型应助MS采纳,获得10
39秒前
善学以致用应助木子采纳,获得10
39秒前
lgq12697完成签到,获得积分10
41秒前
天下无敌丑娃娃完成签到,获得积分10
43秒前
45秒前
47秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795440
求助须知:如何正确求助?哪些是违规求助? 3340420
关于积分的说明 10300235
捐赠科研通 3056989
什么是DOI,文献DOI怎么找? 1677332
邀请新用户注册赠送积分活动 805385
科研通“疑难数据库(出版商)”最低求助积分说明 762491