亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Metaheuristic Algorithms in Optimization and its Application: A Review

元启发式 计算机科学 并行元启发式 数学优化 算法 数学 元优化
作者
Heba Mohammed Fadhil
标识
DOI:10.31972/iceit2024.013
摘要

Metaheuristic algorithms are an intelligent way of thinking and working developed for resolving diverse issues about optimization. The number of potential solutions for such problems often is too large to be properly analyzed using standard procedures; thus, these algorithms are highly flexible and can be useful in many cases where needed to predict different types of optimizations accurately. Metaheuristics take inspiration from several natural processes like evolution or animal behavior, which allow them to show strength without being specific only towards one area. Some Metaheuristics algorithms are commonly being used like : Genetic Algorithm (GA), Simulated Annealing (SA), Evolutionary Algorithm (EA), Tabu Search (TS), Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Ant Colony Optimization (ACO), and Cuckoo Search Approach (CSA). All of them derives from this initial set of solutions and employ heuristics to get from this set of solutions.. The objective of this paper is to thoroughly analyze different metaheuristic algorithms. Their principles, mechanisms and the area where they are applied and will delve into. This paper provides a qualitative analysis of these algorithmic performances in diverse settings that underscore their strong suits as well as their weaknesses. The discourse also makes mention of some specific examples like how metaheuristic algorithms find utility application in various fields which include but are not limited to engineering or computer science, even economics and healthcare later down the line receive due consideration with an eye towards specific results; showing not only how effective these individual algorithms can be when applied under differing scenarios but also pointing out areas deserving further research efforts be directed onto them.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rocky完成签到,获得积分10
3秒前
酷酷友容应助Rocky采纳,获得10
7秒前
12秒前
14秒前
korchid发布了新的文献求助10
19秒前
21秒前
ljj发布了新的文献求助10
21秒前
科目三应助korchid采纳,获得10
26秒前
ljj完成签到,获得积分10
53秒前
3113129605完成签到 ,获得积分10
54秒前
聪明勇敢有力气完成签到 ,获得积分10
56秒前
李健的小迷弟应助三土采纳,获得10
1分钟前
1分钟前
zjq发布了新的文献求助20
1分钟前
潇洒的茗茗完成签到,获得积分10
1分钟前
常存喜乐完成签到 ,获得积分10
1分钟前
2分钟前
2分钟前
学术小白完成签到,获得积分10
2分钟前
三土发布了新的文献求助10
2分钟前
2分钟前
123456789完成签到,获得积分10
2分钟前
dota1dota26完成签到,获得积分10
2分钟前
今后应助科研通管家采纳,获得10
3分钟前
morena应助科研通管家采纳,获得20
3分钟前
Orange应助科研通管家采纳,获得10
3分钟前
Ava应助尊敬乐蕊采纳,获得10
3分钟前
3分钟前
kingcoffee完成签到 ,获得积分10
3分钟前
身法马可波罗完成签到 ,获得积分10
4分钟前
Han.T完成签到,获得积分20
4分钟前
4分钟前
搜集达人应助Marciu33采纳,获得30
4分钟前
P_Chem完成签到,获得积分10
4分钟前
Han.T发布了新的文献求助10
4分钟前
JamesPei应助Han.T采纳,获得10
4分钟前
4分钟前
Marciu33发布了新的文献求助30
4分钟前
struggling2026完成签到 ,获得积分10
4分钟前
5分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 680
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4124264
求助须知:如何正确求助?哪些是违规求助? 3662154
关于积分的说明 11590291
捐赠科研通 3362579
什么是DOI,文献DOI怎么找? 1847653
邀请新用户注册赠送积分活动 912036
科研通“疑难数据库(出版商)”最低求助积分说明 827838