Metaheuristic Algorithms in Optimization and its Application: A Review

元启发式 计算机科学 并行元启发式 数学优化 算法 数学 元优化
作者
Heba Mohammed Fadhil
标识
DOI:10.31972/iceit2024.013
摘要

Metaheuristic algorithms are an intelligent way of thinking and working developed for resolving diverse issues about optimization. The number of potential solutions for such problems often is too large to be properly analyzed using standard procedures; thus, these algorithms are highly flexible and can be useful in many cases where needed to predict different types of optimizations accurately. Metaheuristics take inspiration from several natural processes like evolution or animal behavior, which allow them to show strength without being specific only towards one area. Some Metaheuristics algorithms are commonly being used like : Genetic Algorithm (GA), Simulated Annealing (SA), Evolutionary Algorithm (EA), Tabu Search (TS), Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Ant Colony Optimization (ACO), and Cuckoo Search Approach (CSA). All of them derives from this initial set of solutions and employ heuristics to get from this set of solutions.. The objective of this paper is to thoroughly analyze different metaheuristic algorithms. Their principles, mechanisms and the area where they are applied and will delve into. This paper provides a qualitative analysis of these algorithmic performances in diverse settings that underscore their strong suits as well as their weaknesses. The discourse also makes mention of some specific examples like how metaheuristic algorithms find utility application in various fields which include but are not limited to engineering or computer science, even economics and healthcare later down the line receive due consideration with an eye towards specific results; showing not only how effective these individual algorithms can be when applied under differing scenarios but also pointing out areas deserving further research efforts be directed onto them.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
虚心沂发布了新的文献求助10
1秒前
丽丽完成签到,获得积分20
1秒前
sevenseven完成签到,获得积分10
1秒前
研友_Z1xNWn完成签到,获得积分10
2秒前
yanshapo发布了新的文献求助10
2秒前
myth发布了新的文献求助10
2秒前
memedaaaah完成签到,获得积分10
3秒前
优美怀蕊发布了新的文献求助10
3秒前
camaelxin完成签到,获得积分10
3秒前
Kail完成签到,获得积分10
4秒前
二号完成签到,获得积分10
5秒前
nancyshine完成签到,获得积分10
5秒前
大地完成签到,获得积分10
5秒前
李冰完成签到,获得积分10
5秒前
俊秀的思山完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
7秒前
悦耳芹菜完成签到,获得积分10
7秒前
7秒前
7秒前
sdfhjbhsdfb发布了新的文献求助10
8秒前
斯文的道罡完成签到,获得积分10
8秒前
柚子完成签到 ,获得积分10
9秒前
武玉坤完成签到,获得积分10
9秒前
June发布了新的文献求助10
9秒前
9秒前
高挑的听南完成签到,获得积分10
10秒前
10秒前
优美怀蕊完成签到,获得积分10
10秒前
彩色觅荷完成签到,获得积分10
10秒前
10秒前
10秒前
Kiki发布了新的文献求助10
10秒前
ALDRC完成签到,获得积分10
10秒前
华仔应助合适秀发采纳,获得10
11秒前
CR7应助木木采纳,获得20
11秒前
susu发布了新的文献求助20
11秒前
乔西发布了新的文献求助10
11秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Assessing organizational change : A guide to methods, measures, and practices 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3904161
求助须知:如何正确求助?哪些是违规求助? 3449176
关于积分的说明 10856593
捐赠科研通 3174506
什么是DOI,文献DOI怎么找? 1753816
邀请新用户注册赠送积分活动 848047
科研通“疑难数据库(出版商)”最低求助积分说明 790634