Metaheuristic Algorithms in Optimization and its Application: A Review

元启发式 计算机科学 并行元启发式 数学优化 算法 数学 元优化
作者
Heba Mohammed Fadhil
标识
DOI:10.31972/iceit2024.013
摘要

Metaheuristic algorithms are an intelligent way of thinking and working developed for resolving diverse issues about optimization. The number of potential solutions for such problems often is too large to be properly analyzed using standard procedures; thus, these algorithms are highly flexible and can be useful in many cases where needed to predict different types of optimizations accurately. Metaheuristics take inspiration from several natural processes like evolution or animal behavior, which allow them to show strength without being specific only towards one area. Some Metaheuristics algorithms are commonly being used like : Genetic Algorithm (GA), Simulated Annealing (SA), Evolutionary Algorithm (EA), Tabu Search (TS), Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Ant Colony Optimization (ACO), and Cuckoo Search Approach (CSA). All of them derives from this initial set of solutions and employ heuristics to get from this set of solutions.. The objective of this paper is to thoroughly analyze different metaheuristic algorithms. Their principles, mechanisms and the area where they are applied and will delve into. This paper provides a qualitative analysis of these algorithmic performances in diverse settings that underscore their strong suits as well as their weaknesses. The discourse also makes mention of some specific examples like how metaheuristic algorithms find utility application in various fields which include but are not limited to engineering or computer science, even economics and healthcare later down the line receive due consideration with an eye towards specific results; showing not only how effective these individual algorithms can be when applied under differing scenarios but also pointing out areas deserving further research efforts be directed onto them.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoxiao完成签到,获得积分10
刚刚
qiao应助温暖冰珍采纳,获得10
1秒前
1秒前
庾楼月宛如昨完成签到 ,获得积分10
2秒前
5秒前
机灵老九完成签到,获得积分10
6秒前
ghy完成签到 ,获得积分10
6秒前
7秒前
9秒前
小伊诺米发布了新的文献求助10
10秒前
gaoyayaaa应助明亮访烟采纳,获得20
10秒前
11秒前
刘敏小七完成签到,获得积分20
13秒前
黑妖发布了新的文献求助10
13秒前
魔幻的紊发布了新的文献求助10
13秒前
14秒前
吴丽萍发布了新的文献求助10
15秒前
苏苏苏发布了新的文献求助30
17秒前
刘敏小七发布了新的文献求助30
18秒前
27秒前
科研通AI5应助苏苏苏采纳,获得30
27秒前
NexusExplorer应助吴丽萍采纳,获得10
28秒前
zhuminghui发布了新的文献求助10
32秒前
小伊诺米完成签到,获得积分10
32秒前
眯眯眼的不愁完成签到,获得积分10
32秒前
共享精神应助黑妖采纳,获得10
32秒前
顺利毕业的山完成签到,获得积分10
36秒前
37秒前
37秒前
39秒前
完美世界应助zhuminghui采纳,获得10
39秒前
传奇3应助haveatry采纳,获得10
40秒前
41秒前
41秒前
prim发布了新的文献求助10
43秒前
47秒前
48秒前
49秒前
49秒前
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776680
求助须知:如何正确求助?哪些是违规求助? 3322161
关于积分的说明 10208892
捐赠科研通 3037360
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797614
科研通“疑难数据库(出版商)”最低求助积分说明 757921