克洛丹
铁
化学
功能(生物学)
生物化学
生物
细胞生物学
紧密连接
无机化学
作者
Pranav Runwal,Jae Pyun,Stephanie A. Newman,Celeste Mawal,Ashley I. Bush,Liam M. Koehn,Joseph A. Nicolazzo
标识
DOI:10.1007/s11095-025-03826-2
摘要
Iron overload is implicated in many neurodegenerative diseases, where there is also blood-brain barrier (BBB) dysfunction. As there is a growing interest in the role of iron in modulating key BBB proteins, this study assessed the effect of iron on the expression and function of P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and claudin-5 in primary mouse brain endothelial cells (MBECs) and their abundance in mouse brain microvessel-enriched membrane fractions (MVEFs). Following a 48 h treatment with ferric ammonium citrate (FAC, 250 µM), MBEC protein abundance (P-gp, BCRP and claudin-5) and mRNA (abcb1a, abcg2, and cldn5) were assessed by western blotting and RT-qPCR, respectively. Protein function was evaluated by assessing transport of substrates 3H-digoxin (P-gp), 3H-prazosin (BCRP) and 14C-sucrose (paracellular permeability). C57BL/6 mice received iron dextran (100 mg/kg, intraperitoneally) over 4 weeks, and MVEF protein abundance and iron levels (in MVEFs and plasma) were quantified via western blotting and inductively coupled plasma-mass spectrometry (ICP-MS), respectively. FAC treatment reduced P-gp protein by 50% and abcb1a mRNA by 43%, without affecting 3H-digoxin transport. FAC did not alter BCRP protein or function, but decreased abcg2 mRNA by 59%. FAC reduced claudin-5 protein and cldn5 mRNA by 65% and 70%, respectively, resulting in a 200% increase in 14C-sucrose permeability. In vivo, iron dextran treatment significantly elevated plasma iron levels (2.2-fold) but did not affect brain MVEF iron content or alter P-gp, BCRP or claudin-5 protein abundance. Iron overload modulates BBB transporters and junction proteins in vitro, highlighting potential implications for CNS drug delivery in neurodegenerative diseases.
科研通智能强力驱动
Strongly Powered by AbleSci AI