Classification of Interventional Radiology Reports into Technique Categories with a Fine-Tuned Large Language Model

考试(生物学) 医学 计算机科学 医学物理学 放射科 人工智能 训练集 自然语言处理 古生物学 生物
作者
Koichiro Yasaka,Takeshi Nomura,Jun Kamohara,Hiroshi Hirakawa,Takatoshi Kubo,Shigeru Kiryu,Osamu Abe
标识
DOI:10.1007/s10278-024-01370-w
摘要

The aim of this study is to develop a fine-tuned large language model that classifies interventional radiology reports into technique categories and to compare its performance with readers. This retrospective study included 3198 patients (1758 males and 1440 females; age, 62.8 ± 16.8 years) who underwent interventional radiology from January 2018 to July 2024. Training, validation, and test datasets involved 2292, 250, and 656 patients, respectively. Input data involved texts in clinical indication, imaging diagnosis, and image-finding sections of interventional radiology reports. Manually classified technique categories (15 categories in total) were utilized as reference data. Fine-tuning of the Bidirectional Encoder Representations model was performed using training and validation datasets. This process was repeated 15 times due to the randomness of the learning process. The best-performed model, which showed the highest accuracy among 15 trials, was selected to further evaluate its performance in the independent test dataset. The report classification involved one radiologist (reader 1) and two radiology residents (readers 2 and 3). The accuracy and macrosensitivity (average of each category's sensitivity) of the best-performed model in the validation dataset were 0.996 and 0.994, respectively. For the test dataset, the accuracy/macrosensitivity were 0.988/0.980, 0.986/0.977, 0.989/0.979, and 0.988/0.980 in the best model, reader 1, reader 2, and reader 3, respectively. The model required 0.178 s required for classification per patient, which was 17.5–19.9 times faster than readers. In conclusion, fine-tuned large language model classified interventional radiology reports into technique categories with high accuracy similar to readers within a remarkably shorter time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
_呱_完成签到,获得积分10
1秒前
wanci应助结实的小土豆采纳,获得10
1秒前
1秒前
catsfat发布了新的文献求助10
2秒前
2秒前
烟花应助努力的欢欢采纳,获得10
4秒前
4秒前
lazy发布了新的文献求助10
4秒前
5秒前
米糊发布了新的文献求助10
5秒前
6秒前
华仔应助navvv采纳,获得10
6秒前
大鹏发布了新的文献求助20
7秒前
9秒前
9秒前
华理附院孙文博完成签到 ,获得积分10
9秒前
tui发布了新的文献求助10
10秒前
11秒前
找找找文献完成签到,获得积分10
11秒前
江月年发布了新的文献求助10
12秒前
13秒前
晶晶发布了新的文献求助10
13秒前
chenlc971125完成签到 ,获得积分10
13秒前
sganthem完成签到,获得积分10
13秒前
学术废物发布了新的文献求助10
14秒前
zhangheng发布了新的文献求助20
14秒前
Bing完成签到,获得积分10
15秒前
卡卡完成签到 ,获得积分10
15秒前
欢呼的傲旋完成签到,获得积分10
15秒前
阿科完成签到,获得积分10
16秒前
18秒前
香蕉觅云应助MOMOJI采纳,获得10
19秒前
科研通AI5应助江月年采纳,获得10
19秒前
20秒前
20秒前
思源应助辛晓静采纳,获得10
21秒前
21秒前
小蘑菇应助tui采纳,获得10
22秒前
Jadon完成签到,获得积分10
22秒前
22秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3821016
求助须知:如何正确求助?哪些是违规求助? 3363943
关于积分的说明 10426304
捐赠科研通 3082385
什么是DOI,文献DOI怎么找? 1695554
邀请新用户注册赠送积分活动 815190
科研通“疑难数据库(出版商)”最低求助积分说明 769034