Hyperspectral Image Classification Model Using Squeeze and Excitation Network with Deep Learning

计算机科学 人工智能 深度学习 高光谱成像 卷积神经网络 水准点(测量) 模式识别(心理学) 学习迁移 特征提取 特征(语言学) 领域(数学) 块(置换群论) 特征学习 人工神经网络 机器学习 数学 哲学 语言学 纯数学 地理 大地测量学 几何学
作者
T. Rajendran,Prajoona Valsalan,J. Amutharaj,M. Jenifer,S Rinesh,G. Charlyn Pushpa Latha,T. Anitha
出处
期刊:Computational Intelligence and Neuroscience [Hindawi Publishing Corporation]
卷期号:2022: 1-9 被引量:53
标识
DOI:10.1155/2022/9430779
摘要

In the domain of remote sensing, the classification of hyperspectral image (HSI) has become a popular topic. In general, the complicated features of hyperspectral data cause the precise classification difficult for standard machine learning approaches. Deep learning-based HSI classification has lately received a lot of interest in the field of remote sensing and has shown promising results. As opposed to conventional hand-crafted feature-based classification approaches, deep learning can automatically learn complicated features of HSIs with a greater number of hierarchical layers. Because HSI’s data structure is complicated, applying deep learning to it is difficult. The primary objective of this research is to propose a deep feature extraction model for HSI classification. Deep networks can extricate features of spatial and spectral from HSI data simultaneously, which is advantageous for increasing the performances of the proposed system. The squeeze and excitation (SE) network is combined with convolutional neural networks (SE-CNN) in this work to increase its performance in extracting features and classifying HSI. The squeeze and excitation block is designed to improve the representation quality of a CNN. Three benchmark datasets are utilized in the experiment to evaluate the proposed model: Pavia Centre, Pavia University, and Salinas. The proposed model’s performance is validated by a performance comparison with current deep transfer learning approaches such as VGG-16, Inception-v3, and ResNet-50. In terms of accuracy on each class of datasets and overall accuracy, the proposed SE-CNN model outperforms the compared models. The proposed model achieved an overall accuracy of 96.05% for Pavia University, 98.94% for Pavia Centre dataset, and 96.33% for Salinas dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Li发布了新的文献求助10
2秒前
bkagyin应助Ado采纳,获得10
4秒前
顾矜应助浏阳河采纳,获得10
7秒前
9秒前
我是老大应助话语采纳,获得10
10秒前
清爽的映真完成签到,获得积分10
11秒前
紧张的幻桃完成签到,获得积分10
12秒前
悠旷完成签到 ,获得积分10
13秒前
香蕉觅云应助岁岁知采纳,获得10
13秒前
dsgfg发布了新的文献求助10
15秒前
浮游应助浏阳河采纳,获得10
20秒前
怡然新梅完成签到,获得积分10
21秒前
wanci应助liyun采纳,获得10
23秒前
23秒前
23秒前
Ava应助科研通管家采纳,获得10
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
Jasper应助科研通管家采纳,获得10
24秒前
Akim应助科研通管家采纳,获得10
24秒前
科目三应助科研通管家采纳,获得10
24秒前
yznfly应助科研通管家采纳,获得50
24秒前
华仔应助科研通管家采纳,获得10
24秒前
传奇3应助科研通管家采纳,获得10
24秒前
SciGPT应助科研通管家采纳,获得10
24秒前
Jasper应助科研通管家采纳,获得10
24秒前
小二郎应助科研通管家采纳,获得10
24秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
李健应助科研通管家采纳,获得10
24秒前
大个应助科研通管家采纳,获得10
24秒前
丘比特应助科研通管家采纳,获得10
24秒前
Akim应助科研通管家采纳,获得10
24秒前
兔子应助科研通管家采纳,获得10
24秒前
24秒前
山奈完成签到,获得积分10
25秒前
梵高完成签到,获得积分10
28秒前
mobay完成签到,获得积分10
29秒前
niulugai完成签到,获得积分10
29秒前
31秒前
31秒前
无语大王完成签到,获得积分10
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 800
求中国石油大学(北京)图书馆的硕士论文,作者董晨,十年前搞太赫兹的 500
Vertebrate Palaeontology, 5th Edition 500
Narrative Method and Narrative form in Masaccio's Tribute Money 500
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4767916
求助须知:如何正确求助?哪些是违规求助? 4104792
关于积分的说明 12697671
捐赠科研通 3822670
什么是DOI,文献DOI怎么找? 2109735
邀请新用户注册赠送积分活动 1134223
关于科研通互助平台的介绍 1015292