Hyperspectral Image Classification Model Using Squeeze and Excitation Network with Deep Learning

计算机科学 人工智能 深度学习 高光谱成像 卷积神经网络 水准点(测量) 模式识别(心理学) 学习迁移 特征提取 特征(语言学) 领域(数学) 块(置换群论) 特征学习 人工神经网络 机器学习 数学 哲学 语言学 纯数学 地理 大地测量学 几何学
作者
T. Rajendran,Prajoona Valsalan,J. Amutharaj,M. Jenifer,S Rinesh,G. Charlyn Pushpa Latha,T. Anitha
出处
期刊:Computational Intelligence and Neuroscience [Hindawi Publishing Corporation]
卷期号:2022: 1-9 被引量:53
标识
DOI:10.1155/2022/9430779
摘要

In the domain of remote sensing, the classification of hyperspectral image (HSI) has become a popular topic. In general, the complicated features of hyperspectral data cause the precise classification difficult for standard machine learning approaches. Deep learning-based HSI classification has lately received a lot of interest in the field of remote sensing and has shown promising results. As opposed to conventional hand-crafted feature-based classification approaches, deep learning can automatically learn complicated features of HSIs with a greater number of hierarchical layers. Because HSI’s data structure is complicated, applying deep learning to it is difficult. The primary objective of this research is to propose a deep feature extraction model for HSI classification. Deep networks can extricate features of spatial and spectral from HSI data simultaneously, which is advantageous for increasing the performances of the proposed system. The squeeze and excitation (SE) network is combined with convolutional neural networks (SE-CNN) in this work to increase its performance in extracting features and classifying HSI. The squeeze and excitation block is designed to improve the representation quality of a CNN. Three benchmark datasets are utilized in the experiment to evaluate the proposed model: Pavia Centre, Pavia University, and Salinas. The proposed model’s performance is validated by a performance comparison with current deep transfer learning approaches such as VGG-16, Inception-v3, and ResNet-50. In terms of accuracy on each class of datasets and overall accuracy, the proposed SE-CNN model outperforms the compared models. The proposed model achieved an overall accuracy of 96.05% for Pavia University, 98.94% for Pavia Centre dataset, and 96.33% for Salinas dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助天天向上赶采纳,获得10
1秒前
anya完成签到,获得积分10
2秒前
Siavy完成签到,获得积分10
3秒前
wuya发布了新的文献求助10
4秒前
隐形曼青应助felix采纳,获得30
4秒前
CipherSage应助kaka采纳,获得30
5秒前
HK发布了新的文献求助10
5秒前
小江完成签到,获得积分10
5秒前
可千万不要躺平呀应助xuxu采纳,获得10
6秒前
香蕉觅云应助徐瑕客采纳,获得200
8秒前
Ava应助han采纳,获得10
8秒前
传奇3应助高凯璇采纳,获得10
9秒前
直率的凌香完成签到,获得积分10
9秒前
10秒前
10秒前
wuya完成签到,获得积分20
11秒前
从容芮应助OCDer采纳,获得150
11秒前
11秒前
完美世界应助HK采纳,获得30
12秒前
李健应助2220190143采纳,获得10
12秒前
徐徐发布了新的文献求助10
13秒前
王一发布了新的文献求助10
16秒前
16秒前
端庄的含卉完成签到,获得积分20
16秒前
哎呦发布了新的文献求助10
17秒前
小布发布了新的文献求助10
17秒前
姜至发布了新的文献求助10
19秒前
20秒前
20秒前
SciGPT应助静默采纳,获得30
21秒前
24秒前
24秒前
汉堡包应助dawnn采纳,获得10
25秒前
2220190143发布了新的文献求助10
27秒前
ssssbbbb完成签到,获得积分10
27秒前
PJR关闭了PJR文献求助
28秒前
笑语盈盈发布了新的文献求助10
28秒前
29秒前
30秒前
小马甲应助哎呦采纳,获得10
30秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3906146
求助须知:如何正确求助?哪些是违规求助? 3451742
关于积分的说明 10866200
捐赠科研通 3177147
什么是DOI,文献DOI怎么找? 1755205
邀请新用户注册赠送积分活动 848710
科研通“疑难数据库(出版商)”最低求助积分说明 791226