Reinforcement learning-based particle swarm optimization with neighborhood differential mutation strategy

强化学习 粒子群优化 计算机科学 数学优化 差异进化 突变 趋同(经济学) 早熟收敛 局部最优 操作员(生物学) 最优化问题 人工智能 算法 数学 生物化学 转录因子 经济增长 基因 抑制因子 经济 化学
作者
Wei Li,Peng Liang,Bo Sun,Yafeng Sun,Ying Huang
出处
期刊:Swarm and evolutionary computation [Elsevier BV]
卷期号:78: 101274-101274 被引量:53
标识
DOI:10.1016/j.swevo.2023.101274
摘要

The particle swarm optimization (PSO) algorithm has been one of the most effective methods for solving various engineering optimization problems. Most existing PSO variants frequently use fixed operators, the adoption of a fixed operator learning mode may restrict the intelligence level of each particle, thus reducing the performance of PSO in solving optimization issues with complicated fitness landscapes. To address single goal real-parameter numerical optimization while overcoming the above shortcoming, this paper proposes a reinforcement learning-based particle swarm optimization with neighborhood differential mutation strategy (NRLPSO). In NRLPSO, a dynamic oscillation inertial weight (DOW) strategy that provides particles with dynamic adjustment ability in different situations is designed. To resolve the operator selection conundrum of exploration and exploitation, a reinforcement learning-based velocity vector generation (VRL) strategy is developed. At each iteration, particles select the velocity update model based on reinforcement learning, and VRL helps to thoroughly search the problem space. A velocity updating mechanism based on cosine similarity (VCS) is applied to control the velocity learning mode to determine more promising solutions. Furthermore, to alleviate the problem of premature convergence, a local update strategy with neighborhood differential mutation (NDM) is employed to increase the diversity of the algorithm. To verify the efficiency of the proposed algorithm, the CEC2017 and CEC2022 test suites are implemented, and nine classic or state-of-the-art PSO variants are comprehensively tested. The experimental results show that NRLPSO outperforms the popular PSO variants in terms of convergence speed and accuracy. Since NRLPSO utilizes the DE mutations, it is compared with the representative LSHADE variant algorithm - LSHADE_SPACMA. Although LSHADE_SPACMA is better than NRLPSO concerning algorithm stability and convergence accuracy, we will refine our work in the future to enhance the performance in all aspects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
敖晋滔完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
醉月舞阳完成签到,获得积分10
2秒前
HarisonFisher发布了新的文献求助10
3秒前
3秒前
曲雪一完成签到,获得积分10
4秒前
哈哈鹿完成签到,获得积分10
4秒前
伍盼夏完成签到,获得积分10
5秒前
5秒前
Imstemcell发布了新的文献求助10
5秒前
糊涂的马里奥完成签到 ,获得积分10
6秒前
6秒前
wangp发布了新的文献求助10
6秒前
7秒前
7秒前
小蘑菇应助自然飞扬采纳,获得10
8秒前
9秒前
9秒前
ThorJun完成签到,获得积分10
10秒前
skittles发布了新的文献求助10
10秒前
领导范儿应助zht采纳,获得10
10秒前
10秒前
知性的真发布了新的文献求助10
11秒前
echo完成签到 ,获得积分10
11秒前
孤独的涔完成签到,获得积分10
14秒前
HarisonFisher完成签到,获得积分10
14秒前
15秒前
yjpppppp发布了新的文献求助10
15秒前
知性的真完成签到,获得积分10
17秒前
CodeCraft应助SIXGOD采纳,获得10
18秒前
18秒前
18秒前
maliyun0725完成签到,获得积分20
18秒前
齐泽克完成签到 ,获得积分10
19秒前
19秒前
71完成签到 ,获得积分10
19秒前
serranda完成签到 ,获得积分10
20秒前
研友_VZG7GZ应助zht采纳,获得10
21秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
植物基因组学(第二版) 1000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4094541
求助须知:如何正确求助?哪些是违规求助? 3632845
关于积分的说明 11515018
捐赠科研通 3343493
什么是DOI,文献DOI怎么找? 1837674
邀请新用户注册赠送积分活动 905271
科研通“疑难数据库(出版商)”最低求助积分说明 823062