Reinforcement learning-based particle swarm optimization with neighborhood differential mutation strategy

强化学习 粒子群优化 计算机科学 数学优化 差异进化 突变 趋同(经济学) 早熟收敛 局部最优 操作员(生物学) 最优化问题 人工智能 算法 数学 生物化学 转录因子 经济增长 基因 抑制因子 经济 化学
作者
Wei Li,Peng Liang,Bo Sun,Yafeng Sun,Ying Huang
出处
期刊:Swarm and evolutionary computation [Elsevier BV]
卷期号:78: 101274-101274 被引量:48
标识
DOI:10.1016/j.swevo.2023.101274
摘要

The particle swarm optimization (PSO) algorithm has been one of the most effective methods for solving various engineering optimization problems. Most existing PSO variants frequently use fixed operators, the adoption of a fixed operator learning mode may restrict the intelligence level of each particle, thus reducing the performance of PSO in solving optimization issues with complicated fitness landscapes. To address single goal real-parameter numerical optimization while overcoming the above shortcoming, this paper proposes a reinforcement learning-based particle swarm optimization with neighborhood differential mutation strategy (NRLPSO). In NRLPSO, a dynamic oscillation inertial weight (DOW) strategy that provides particles with dynamic adjustment ability in different situations is designed. To resolve the operator selection conundrum of exploration and exploitation, a reinforcement learning-based velocity vector generation (VRL) strategy is developed. At each iteration, particles select the velocity update model based on reinforcement learning, and VRL helps to thoroughly search the problem space. A velocity updating mechanism based on cosine similarity (VCS) is applied to control the velocity learning mode to determine more promising solutions. Furthermore, to alleviate the problem of premature convergence, a local update strategy with neighborhood differential mutation (NDM) is employed to increase the diversity of the algorithm. To verify the efficiency of the proposed algorithm, the CEC2017 and CEC2022 test suites are implemented, and nine classic or state-of-the-art PSO variants are comprehensively tested. The experimental results show that NRLPSO outperforms the popular PSO variants in terms of convergence speed and accuracy. Since NRLPSO utilizes the DE mutations, it is compared with the representative LSHADE variant algorithm - LSHADE_SPACMA. Although LSHADE_SPACMA is better than NRLPSO concerning algorithm stability and convergence accuracy, we will refine our work in the future to enhance the performance in all aspects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雪鸮发布了新的文献求助10
1秒前
Simoody发布了新的文献求助30
2秒前
2秒前
优雅山柏发布了新的文献求助10
3秒前
yeyuchenfeng发布了新的文献求助50
4秒前
4秒前
4秒前
6秒前
专注的千筹完成签到,获得积分10
6秒前
6秒前
尹忆梅发布了新的文献求助10
7秒前
XXX发布了新的文献求助10
8秒前
Simoody完成签到,获得积分10
9秒前
搜集达人应助虎虎虎采纳,获得10
9秒前
10秒前
10秒前
11秒前
11秒前
董新怡关注了科研通微信公众号
12秒前
13秒前
领导范儿应助粉面菜蛋采纳,获得10
14秒前
华仔应助冷静的静蕾采纳,获得10
14秒前
尹忆梅完成签到,获得积分10
14秒前
传奇3应助Ripal采纳,获得10
15秒前
15秒前
15秒前
15秒前
mushen完成签到,获得积分10
16秒前
16秒前
17秒前
穆一手完成签到 ,获得积分10
17秒前
19秒前
cong发布了新的文献求助10
20秒前
香蕉觅云应助Lunjiang采纳,获得10
21秒前
太阳发布了新的文献求助10
21秒前
llig完成签到,获得积分10
21秒前
李健的小迷弟应助高会和采纳,获得10
21秒前
FashionBoy应助hai采纳,获得10
22秒前
xmyyy发布了新的文献求助10
23秒前
量子星尘发布了新的文献求助10
23秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3870888
求助须知:如何正确求助?哪些是违规求助? 3412930
关于积分的说明 10682384
捐赠科研通 3137478
什么是DOI,文献DOI怎么找? 1730944
邀请新用户注册赠送积分活动 834519
科研通“疑难数据库(出版商)”最低求助积分说明 781191