DeepSeg: Deep Segmental Denoising Neural Network for Seismic Data

计算机科学 降噪 噪音(视频) 人工智能 被动地震 卷积神经网络 信号(编程语言) 频域 预处理器 模式识别(心理学) 信号处理 人工神经网络 时域 语音识别 计算机视觉 地震学 地质学 电信 雷达 图像(数学) 程序设计语言
作者
Naveed Iqbal
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (7): 3397-3404 被引量:33
标识
DOI:10.1109/tnnls.2022.3205421
摘要

Noise attenuation is a crucial phase in seismic signal processing. Enhancing the signal-to-noise ratio (SNR) of registered seismic signals improves subsequent processing and, eventually, data analysis and interpretation. In this work, a novel noise reduction framework based on an intelligent deep convolutional neural network is proposed that works on segments of the time-frequency domain and, hence named as DeepSeg. The proposed network is efficient in learning sparse representation of the data simultaneously in the time-frequency domain and adaptively capturing seismic signals corrupted with noise. DeepSeg is able to achieve impressive denoising performance even when seismic signal shares common frequency band with noise. The proposed approach properly tackles a variety of correlated (color) and uncorrelated noise, and other nonseismic signals. DeepSeg can boost the SNR considerably even in extremely noisy environments with minimal changes to the signal of interest. The effectiveness of the proposed methodology is demonstrated in enhancing passive seismic event detection/denoising. However, there are other obvious applications of the DeepSeg in active and passive seismic fields, e.g., seismic imaging, preprocessing of ambient noise data, and microseismic event monitoring. It is worth pointing out here that the deep neural network is trained exclusively using synthetic seismic data, negating the need for real data during the training phase. Furthermore, the proposed setup is general and its potential applications are not confined to passive event denoising or even seismic. The method proposed is also adaptable to other diverse signals in different settings, like medical images/signals [magnetic resonance imaging (MRI), electroencephalogram (EEG) signals, electrocardiograms (ECG) signals, and retinal images, to name a few], radar signals, speech signals, fault detection in electrical/mechanical systems, daily life images, etc. Experiments on synthetic and real seismic data reveal the efficacy and supremacy of the proposed method in terms of SNR improvement and required training data when compared to the state-of-the-art deep neural network-based denoising technique.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
虹虹发布了新的文献求助10
4秒前
Lj完成签到,获得积分10
8秒前
余味应助科研通管家采纳,获得10
8秒前
cdercder应助科研通管家采纳,获得10
9秒前
余味应助科研通管家采纳,获得10
9秒前
余味应助科研通管家采纳,获得10
9秒前
11秒前
认真丹亦完成签到 ,获得积分10
12秒前
13秒前
捞鱼完成签到,获得积分10
14秒前
活泼新儿完成签到 ,获得积分10
16秒前
unowhoiam完成签到 ,获得积分10
17秒前
Smoiy完成签到 ,获得积分10
23秒前
丰富的大地完成签到,获得积分10
23秒前
32秒前
丸子完成签到 ,获得积分10
33秒前
忆茶戏完成签到 ,获得积分10
35秒前
zhangjianan发布了新的文献求助10
38秒前
自由的信仰完成签到,获得积分10
39秒前
威武画板完成签到 ,获得积分10
43秒前
4归0完成签到 ,获得积分20
45秒前
逆流的鱼完成签到 ,获得积分10
46秒前
51秒前
怕孤单的Hannah完成签到 ,获得积分10
54秒前
55秒前
Sun1c7完成签到,获得积分10
57秒前
flysky120发布了新的文献求助30
58秒前
小杨完成签到 ,获得积分10
1分钟前
我要读博士完成签到 ,获得积分10
1分钟前
theo完成签到 ,获得积分10
1分钟前
1分钟前
z_king_d_23完成签到,获得积分10
1分钟前
1分钟前
花生完成签到 ,获得积分10
1分钟前
YifanWang应助乐乐采纳,获得10
1分钟前
谨慎鹏涛完成签到 ,获得积分10
1分钟前
OAHCIL完成签到 ,获得积分10
1分钟前
李健应助ybwei2008_163采纳,获得10
1分钟前
欣慰冬亦完成签到 ,获得积分10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776037
求助须知:如何正确求助?哪些是违规求助? 3321552
关于积分的说明 10206296
捐赠科研通 3036621
什么是DOI,文献DOI怎么找? 1666435
邀请新用户注册赠送积分活动 797424
科研通“疑难数据库(出版商)”最低求助积分说明 757829