Comprehensive studies on building a scalable downstream process for mRNAs to enable mRNA therapeutics

下游(制造业) 下游加工 信使核糖核酸 化学 过程(计算) 计算生物学 细胞生物学 计算机科学 生物化学 生物 业务 基因 营销 操作系统
作者
Tingting Cui,Kareem Fakhfakh,Hannah Turney,Gülin Güler‐Gane,Aleksandra Tołoczko,Martyn Hulley,Richard Turner
出处
期刊:Biotechnology Progress [American Chemical Society]
卷期号:39 (1) 被引量:10
标识
DOI:10.1002/btpr.3301
摘要

In recent years, mRNA-based therapeutics have been a fast-growing new class of biologics that can, in principle, encode any protein(s) directly in patients to treat various diseases. mRNA vaccines have been proven to work efficiently, have high potency, and can be rapidly developed and deployed, which is critical for a quick responses in the case of a pandemic. Such agile development is enabled by rapid synthesis of RNA in vitro using recombinant enzymes rather than relying on lengthy and complex cell culture processes. mRNA exhibits physical and chemical properties differing from protein-based therapeutics. It is highly negatively charged and the hydroxyl group makes mRNA less stable and more susceptible to hydrolysis and nucleophilic cleavage. This novel work shares comprehensive studies carried out to compare the performance of various mRNA purification strategies by considering its scalability and critical quality attributes. In addition, the paper provides insights on how to establish a scalable mRNA purification process that consists of ultrafiltration/diafiltration and chromatography steps with good recoveries. Alternative Oligo(dT) based columns were further explored aiming to improve total process recovery. With Oligo(dT) as a capture step, overall recoveries of 70% can be achieved for mRNAs studied here that encode anti-influenza immunoglobulin G monoclonal antibodies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
origin发布了新的文献求助30
刚刚
qing应助shezhinicheng采纳,获得10
刚刚
曾泓跃发布了新的文献求助10
2秒前
心海发布了新的文献求助10
2秒前
Hh完成签到 ,获得积分10
2秒前
AMAZZZE发布了新的文献求助10
3秒前
yanziwu94发布了新的文献求助10
3秒前
善学以致用应助HPP123采纳,获得10
4秒前
科目三应助HPP123采纳,获得10
4秒前
搜集达人应助HPP123采纳,获得10
4秒前
ding应助HPP123采纳,获得10
4秒前
传奇3应助HPP123采纳,获得10
4秒前
wanci应助HPP123采纳,获得10
4秒前
烟花应助HPP123采纳,获得10
4秒前
天天快乐应助HPP123采纳,获得10
4秒前
领导范儿应助HPP123采纳,获得10
4秒前
5秒前
SciGPT应助twwm采纳,获得10
6秒前
CYC完成签到 ,获得积分10
6秒前
6秒前
慕青应助owldan采纳,获得10
8秒前
闾丘剑封完成签到 ,获得积分10
9秒前
origin完成签到,获得积分10
9秒前
小周完成签到,获得积分20
11秒前
wsw发布了新的文献求助10
11秒前
心海完成签到,获得积分10
13秒前
小蘑菇应助呆萌不正采纳,获得10
13秒前
希望天下0贩的0应助HPP123采纳,获得10
13秒前
努力学习完成签到,获得积分10
13秒前
传奇3应助HPP123采纳,获得10
13秒前
可爱的函函应助HPP123采纳,获得10
13秒前
思源应助HPP123采纳,获得10
13秒前
桐桐应助HPP123采纳,获得10
13秒前
orixero应助HPP123采纳,获得10
13秒前
NexusExplorer应助HPP123采纳,获得10
14秒前
SciGPT应助HPP123采纳,获得10
14秒前
赘婿应助HPP123采纳,获得10
14秒前
NexusExplorer应助HPP123采纳,获得10
14秒前
小周发布了新的文献求助10
14秒前
17秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Youths Who Reason Exceptionally Well Mathematically and/or Verbally: Using the MVT:D4 Model to Develop Their Talents 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831561
求助须知:如何正确求助?哪些是违规求助? 3373738
关于积分的说明 10481304
捐赠科研通 3093686
什么是DOI,文献DOI怎么找? 1702949
邀请新用户注册赠送积分活动 819237
科研通“疑难数据库(出版商)”最低求助积分说明 771307