A novel energy consumption forecasting model combining an optimized DGM (1, 1) model with interval grey numbers

区间(图论) 消费(社会学) 能源消耗 人均 计量经济学 统计 数学 计算机科学 数学优化 运筹学 工程类 电气工程 社会学 组合数学 人口学 社会科学 人口
作者
Jing Ye,Yaoguo Dang,Song Ding,Yingjie Yang
出处
期刊:Journal of Cleaner Production [Elsevier BV]
卷期号:229: 256-267 被引量:69
标识
DOI:10.1016/j.jclepro.2019.04.336
摘要

Since energy consumption (EC) is becoming an important issue for sustainable development in the world, it has a practical significance to predict EC effectively. However, there are two main uncertainty factors affecting the accuracy of a region's EC prediction. Firstly, with the ongoing rapid changes in society, the consumption amounts can be non-smooth or even fluctuating during a long time period, which makes it difficult to investigate the sequence's trend in order to forecast. Secondly, in a given region, it is difficult to express the consumption amount as a real number, as there are different development levels in the region, which would be more suitably described as interval numbers. Most traditional prediction models for energy consumption forecasting deal with long-term real numbers. It is seldom found to discover research that focuses specifically on uncertain EC data. To this end, a novel energy consumption forecasting model has been established by expressing ECs in a region as interval grey numbers combining with the optimized discrete grey model (DGM(1,1)) in Grey System Theory (GST). To prove the effectiveness of the method, per capita annual electricity consumption in southern Jiangsu of China is selected as an example. The results show that the proposed model reveals the best accuracy for the short data sequences (the average fitting error is only 2.19% and the average three-step forecasting error is less than 4%) compared with three GM models and four classical statistical models. By extension, any fields of EC, such as petroleum consumption, natural gas consumption, can also be predicted using this novel model. As the sustained growth in EC of China's, it is of great significance to predict EC accurately to manage serious energy security and environmental pollution problems, as well as formulating relevant energy policies by the government.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
打打应助aprise采纳,获得10
刚刚
刚刚
刚刚
刚刚
张三发布了新的文献求助10
刚刚
cc完成签到,获得积分10
1秒前
美丽若南发布了新的文献求助10
1秒前
栀清发布了新的文献求助10
3秒前
小脚丫完成签到,获得积分10
3秒前
3秒前
可爱的函函应助wlqc采纳,获得10
4秒前
4秒前
YY再摆烂完成签到,获得积分10
4秒前
淳于绾绾完成签到,获得积分20
4秒前
5秒前
向阳花完成签到,获得积分10
6秒前
新时代牛马完成签到,获得积分10
6秒前
冰魂应助顾北采纳,获得10
7秒前
小张完成签到,获得积分10
7秒前
英姑应助SYY采纳,获得10
7秒前
卡卡西应助柠橙采纳,获得10
7秒前
8秒前
sonder发布了新的文献求助10
8秒前
鹬鸱发布了新的文献求助10
8秒前
9秒前
方一发布了新的文献求助10
9秒前
黎乐荷发布了新的文献求助10
10秒前
10秒前
10秒前
aprise发布了新的文献求助10
10秒前
情怀应助676767采纳,获得10
10秒前
栀清完成签到,获得积分10
11秒前
12秒前
12秒前
12秒前
12秒前
侯侯关注了科研通微信公众号
12秒前
13秒前
14秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3821205
求助须知:如何正确求助?哪些是违规求助? 3363983
关于积分的说明 10426773
捐赠科研通 3082464
什么是DOI,文献DOI怎么找? 1695639
邀请新用户注册赠送积分活动 815196
科研通“疑难数据库(出版商)”最低求助积分说明 769046