已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Handling Constrained Multiobjective Optimization Problems With Constraints in Both the Decision and Objective Spaces

数学优化 多目标优化 计算机科学 可行区 集合(抽象数据类型) 最优化问题 简单(哲学) 帕累托原理 进化算法 空格(标点符号) 非线性规划 非线性系统 约束(计算机辅助设计) 约束优化 数学 哲学 物理 几何学 认识论 量子力学 程序设计语言 操作系统
作者
Zhizhong Liu,Yong Wang
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:23 (5): 870-884 被引量:425
标识
DOI:10.1109/tevc.2019.2894743
摘要

Constrained multiobjective optimization problems (CMOPs) are frequently encountered in real-world applications, which usually involve constraints in both the decision and objective spaces. However, current artificial CMOPs never consider constraints in the decision space (i.e., decision constraints) and constraints in the objective space (i.e., objective constraints) at the same time. As a result, they have a limited capability to simulate practical scenes. To remedy this issue, a set of CMOPs, named DOC, is constructed in this paper. It is the first attempt to consider both the decision and objective constraints simultaneously in the design of artificial CMOPs. Specifically, in DOC, various decision constraints (e.g., inequality constraints, equality constraints, linear constraints, and nonlinear constraints) are collected from real-world applications, thus making the feasible region in the decision space have different properties (e.g., nonlinear, extremely small, and multimodal). On the other hand, some simple and controllable objective constraints are devised to reduce the feasible region in the objective space and to make the Pareto front have diverse characteristics (e.g., continuous, discrete, mixed, and degenerate). As a whole, DOC poses a great challenge for a constrained multiobjective evolutionary algorithm (CMOEA) to obtain a set of well-distributed and well-converged feasible solutions. In order to enhance current CMOEAs' performance on DOC, a simple and efficient two-phase framework, named ToP, is proposed in this paper. In ToP, the first phase is implemented to find the promising feasible area by transforming a CMOP into a constrained single-objective optimization problem. Then in the second phase, a specific CMOEA is executed to obtain the final solutions. ToP is applied to four state-of-the-art CMOEAs, and the experimental results suggest that it is quite effective.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
洁净方盒发布了新的文献求助10
1秒前
yechengjie完成签到,获得积分10
4秒前
王某完成签到 ,获得积分10
5秒前
科研通AI6应助FSDF采纳,获得10
5秒前
6秒前
善学以致用应助董二千采纳,获得10
7秒前
10秒前
echo发布了新的文献求助10
10秒前
coc发布了新的文献求助20
11秒前
chen完成签到,获得积分10
12秒前
14秒前
ruiz给ruiz的求助进行了留言
14秒前
阳光问安完成签到 ,获得积分10
15秒前
多看文献发布了新的文献求助10
17秒前
HK完成签到 ,获得积分10
18秒前
lqhccww发布了新的文献求助10
18秒前
思絮完成签到 ,获得积分10
21秒前
21秒前
光亮静槐完成签到 ,获得积分10
23秒前
24秒前
Nomb1发布了新的文献求助10
27秒前
Noah完成签到 ,获得积分0
28秒前
Heyley完成签到,获得积分10
28秒前
zlt发布了新的文献求助10
31秒前
耶耶耶完成签到,获得积分10
32秒前
34秒前
sakyadamo发布了新的文献求助10
34秒前
Dayle发布了新的文献求助10
34秒前
34秒前
陆上飞完成签到,获得积分10
36秒前
chaos完成签到 ,获得积分10
36秒前
李浩发布了新的文献求助10
37秒前
喜喜喜嘻嘻嘻完成签到 ,获得积分10
37秒前
欣欣完成签到 ,获得积分10
38秒前
梁33完成签到,获得积分10
38秒前
123321完成签到 ,获得积分10
38秒前
39秒前
zinan完成签到,获得积分10
39秒前
ruiz发布了新的文献求助10
40秒前
狂野的蜡烛完成签到 ,获得积分10
42秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502464
求助须知:如何正确求助?哪些是违规求助? 4598341
关于积分的说明 14463804
捐赠科研通 4531872
什么是DOI,文献DOI怎么找? 2483718
邀请新用户注册赠送积分活动 1466934
关于科研通互助平台的介绍 1439567