已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Epilepsy Seizure Prediction on EEG Using Common Spatial Pattern and Convolutional Neural Network

计算机科学 卷积神经网络 人工智能 癫痫 脑电图 模式识别(心理学) 人工神经网络 心理学 神经科学
作者
Yuan Zhang,Yao Guo,Po Yang,Wei Chen,Benny Lo
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (2): 465-474 被引量:247
标识
DOI:10.1109/jbhi.2019.2933046
摘要

Epilepsy seizure prediction paves the way of timely warning for patients to take more active and effective intervention measures. Compared to seizure detection that only identifies the inter-ictal state and the ictal state, far fewer researches have been conducted on seizure prediction because the high similarity makes it challenging to distinguish between the pre-ictal state and the inter-ictal state. In this paper, a novel solution on seizure prediction is proposed using common spatial pattern (CSP) and convolutional neural network (CNN). Firstly, artificial preictal EEG signals based on the original ones are generated by combining the segmented pre-ictal signals to solve the trial imbalance problem between the two states. Secondly, a feature extractor employing wavelet packet decomposition and CSP is designed to extract the distinguishing features in both the time domain and the frequency domain. It can improve overall accuracy while reducing the training time. Finally, a shallow CNN is applied to discriminate between the pre-ictal state and the inter-ictal state. Our proposed solution is evaluated on 23 patients' data from Boston Children's Hospital-MIT scalp EEG dataset by employing a leave-one-out cross-validation, and it achieves a sensitivity of 92.2% and false prediction rate of 0.12/h. Experimental result demonstrates that the proposed approach outperforms most state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
XDSH完成签到 ,获得积分10
3秒前
笨笨以莲发布了新的文献求助10
6秒前
CHEN完成签到 ,获得积分10
10秒前
10秒前
一二完成签到 ,获得积分10
10秒前
FashionBoy应助笨笨以莲采纳,获得10
15秒前
量子星尘发布了新的文献求助10
15秒前
20秒前
雨堂完成签到 ,获得积分10
20秒前
JamesPei应助yyy采纳,获得10
21秒前
25秒前
小雨堂完成签到 ,获得积分10
27秒前
27秒前
Iruri完成签到,获得积分20
28秒前
keen703完成签到 ,获得积分10
28秒前
搜集达人应助涨涨涨采纳,获得10
29秒前
29秒前
Andrewlabeth完成签到,获得积分10
29秒前
奈思完成签到 ,获得积分10
31秒前
31秒前
31秒前
yyy发布了新的文献求助10
34秒前
发财小鱼完成签到 ,获得积分10
34秒前
AARON发布了新的文献求助10
37秒前
40秒前
涨涨涨发布了新的文献求助10
45秒前
qaa2274278941完成签到,获得积分20
47秒前
qq发布了新的文献求助10
47秒前
47秒前
Akim应助andrew12399采纳,获得10
51秒前
冷傲山彤发布了新的文献求助10
52秒前
上官若男应助年轻小鸭子采纳,获得10
52秒前
qaa2274278941发布了新的文献求助10
52秒前
53秒前
Panda尧完成签到,获得积分10
54秒前
Panda尧发布了新的文献求助10
58秒前
58秒前
研友_VZG7GZ应助qaa2274278941采纳,获得10
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Irregular Migration in Southeast Asia: Contemporary Barriers to Regularization and Healthcare 2000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5052685
求助须知:如何正确求助?哪些是违规求助? 4279683
关于积分的说明 13339749
捐赠科研通 4095093
什么是DOI,文献DOI怎么找? 2241446
邀请新用户注册赠送积分活动 1247732
关于科研通互助平台的介绍 1177071