Epilepsy Seizure Prediction on EEG Using Common Spatial Pattern and Convolutional Neural Network

计算机科学 卷积神经网络 人工智能 癫痫 脑电图 模式识别(心理学) 人工神经网络 心理学 神经科学
作者
Yuan Zhang,Yao Guo,Po Yang,Wei Chen,Benny Lo
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:24 (2): 465-474 被引量:247
标识
DOI:10.1109/jbhi.2019.2933046
摘要

Epilepsy seizure prediction paves the way of timely warning for patients to take more active and effective intervention measures. Compared to seizure detection that only identifies the inter-ictal state and the ictal state, far fewer researches have been conducted on seizure prediction because the high similarity makes it challenging to distinguish between the pre-ictal state and the inter-ictal state. In this paper, a novel solution on seizure prediction is proposed using common spatial pattern (CSP) and convolutional neural network (CNN). Firstly, artificial preictal EEG signals based on the original ones are generated by combining the segmented pre-ictal signals to solve the trial imbalance problem between the two states. Secondly, a feature extractor employing wavelet packet decomposition and CSP is designed to extract the distinguishing features in both the time domain and the frequency domain. It can improve overall accuracy while reducing the training time. Finally, a shallow CNN is applied to discriminate between the pre-ictal state and the inter-ictal state. Our proposed solution is evaluated on 23 patients' data from Boston Children's Hospital-MIT scalp EEG dataset by employing a leave-one-out cross-validation, and it achieves a sensitivity of 92.2% and false prediction rate of 0.12/h. Experimental result demonstrates that the proposed approach outperforms most state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助highhigh采纳,获得10
1秒前
碗碗豆喵发布了新的文献求助20
1秒前
研友_VZG7GZ应助Xx采纳,获得10
1秒前
spark完成签到 ,获得积分10
2秒前
2秒前
Hello应助高贵振家采纳,获得10
2秒前
小文子完成签到,获得积分10
3秒前
FashionBoy应助陈宇采纳,获得10
3秒前
科研狗发布了新的文献求助10
3秒前
阿怜完成签到,获得积分10
4秒前
4秒前
王富贵发布了新的文献求助10
4秒前
小二郎应助xieji采纳,获得10
4秒前
cc完成签到,获得积分10
5秒前
HYD完成签到 ,获得积分10
5秒前
5秒前
youzhe发布了新的文献求助10
6秒前
118关闭了118文献求助
6秒前
SciGPT应助似水无痕采纳,获得10
7秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
9秒前
甜蜜的灵凡完成签到,获得积分10
9秒前
9秒前
9秒前
11秒前
12秒前
xxxx关注了科研通微信公众号
12秒前
隐形曼青应助柒柒采纳,获得10
12秒前
笨笨醉薇发布了新的文献求助10
13秒前
积极映安发布了新的文献求助10
13秒前
大白完成签到,获得积分10
14秒前
w野完成签到,获得积分10
14秒前
highhigh发布了新的文献求助10
14秒前
平淡远航发布了新的文献求助10
14秒前
王富贵完成签到,获得积分10
15秒前
15秒前
15秒前
alexy完成签到,获得积分10
15秒前
科研通AI6应助畅快的曼梅采纳,获得30
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532310
求助须知:如何正确求助?哪些是违规求助? 4621065
关于积分的说明 14576628
捐赠科研通 4560938
什么是DOI,文献DOI怎么找? 2499025
邀请新用户注册赠送积分活动 1479001
关于科研通互助平台的介绍 1450265