厄米矩阵
奇异值分解
分解
GSM演进的增强数据速率
数学
价值(数学)
纯数学
极性分解
数学物理
物理
量子力学
化学
计算机科学
统计
算法
人工智能
极地的
有机化学
作者
Loïc Herviou,Jens H. Bardarson,Nicolas Regnault
出处
期刊:Physical review
[American Physical Society]
日期:2019-05-22
卷期号:99 (5)
被引量:196
标识
DOI:10.1103/physreva.99.052118
摘要
We address the breakdown of the bulk-boundary correspondence observed in non-Hermitian systems, where open and periodic systems can have distinct phase diagrams. The correspondence can be completely restored by considering the Hamiltonian's singular value decomposition instead of its eigendecomposition. This leads to a natural topological description in terms of a flattened singular decomposition. This description is equivalent to the usual approach for Hermitian systems and coincides with a recent proposal for the classification of non-Hermitian systems. We generalize the notion of the entanglement spectrum to non-Hermitian systems, and show that the edge physics is indeed completely captured by the periodic bulk Hamiltonian. We exemplify our approach by considering the chiral non-Hermitian Su-Schrieffer-Heger and Chern insulator models. Our work advocates a different perspective on topological non-Hermitian Hamiltonians, paving the way to a better understanding of their entanglement structure.
科研通智能强力驱动
Strongly Powered by AbleSci AI