Automatic Recognition of Facial Displays of Unfelt Emotions

厌恶 藐视 判别式 面部表情 人工智能 计算机科学 幻觉 情绪分类 面部动作编码系统 心理学 面子(社会学概念) 情绪识别 认知心理学 语音识别 模式识别(心理学)
作者
Kaustubh Kulkarni,Ciprian A. Corneanu,Ikechukwu Ofodile,Sergio Escalera,Xavier Baró,Sylwia Hyniewska,Jüri Allik,Gholamreza Anbarjafari
出处
期刊:IEEE Transactions on Affective Computing [Institute of Electrical and Electronics Engineers]
卷期号:12 (2): 377-390 被引量:17
标识
DOI:10.1109/taffc.2018.2874996
摘要

Humans modify their facial expressions in order to communicate their internal states and sometimes to mislead observers regarding their true emotional states. Evidence in experimental psychology shows that discriminative facial responses are short and subtle. This suggests that such behavior would be easier to distinguish when captured in high resolution at an increased frame rate. We are proposing SASE-FE, the first dataset of facial expressions that are either congruent or incongruent with underlying emotion states. We show that overall the problem of recognizing whether facial movements are expressions of authentic emotions or not can be successfully addressed by learning spatio-temporal representations of the data. For this purpose, we propose a method that aggregates features along fiducial trajectories in a deeply learnt space. Performance of the proposed model shows that on average, it is easier to distinguish among genuine facial expressions of emotion than among unfelt facial expressions of emotion and that certain emotion pairs such as contempt and disgust are more difficult to distinguish than the rest. Furthermore, the proposed methodology improves state of the art results on CK+ and OULU-CASIA datasets for video emotion recognition, and achieves competitive results when classifying facial action units on BP4D datase.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小巧的寻双完成签到,获得积分10
1秒前
1秒前
派派星发布了新的文献求助10
1秒前
失眠的诗蕊完成签到,获得积分0
1秒前
56jhjl完成签到,获得积分10
2秒前
五千币完成签到 ,获得积分10
2秒前
Owen应助儒雅沛文采纳,获得10
3秒前
科研通AI5应助月饼同学采纳,获得10
3秒前
3秒前
桐炫完成签到,获得积分10
3秒前
个性的梦岚完成签到,获得积分10
4秒前
谨慎醉易发布了新的文献求助50
4秒前
阿鑫发布了新的文献求助10
4秒前
光影发布了新的文献求助10
5秒前
金角大王发布了新的文献求助10
5秒前
泯珉发布了新的文献求助30
5秒前
6秒前
DEF完成签到,获得积分10
6秒前
zzzlk发布了新的文献求助10
6秒前
7秒前
hucaicai完成签到,获得积分10
7秒前
无敌吴硕应助科研小万采纳,获得10
7秒前
籽儿完成签到,获得积分10
8秒前
8秒前
伈X完成签到,获得积分10
8秒前
9秒前
ding应助修辛采纳,获得100
9秒前
9秒前
9秒前
Lucas应助解不言采纳,获得10
10秒前
星辰大海应助阿鑫采纳,获得10
10秒前
XYZ完成签到,获得积分10
10秒前
加油少年完成签到,获得积分10
10秒前
松溪乾完成签到,获得积分10
11秒前
盗糖小鸭发布了新的文献求助10
11秒前
gqqq完成签到,获得积分10
11秒前
11秒前
派派星完成签到,获得积分10
11秒前
徐徐徐完成签到,获得积分10
11秒前
wyt1239012发布了新的文献求助10
12秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785471
求助须知:如何正确求助?哪些是违规求助? 3331017
关于积分的说明 10249675
捐赠科研通 3046460
什么是DOI,文献DOI怎么找? 1672051
邀请新用户注册赠送积分活动 800962
科研通“疑难数据库(出版商)”最低求助积分说明 759907