WxBS: Wide Baseline Stereo Generalizations

基线(sea) 计算机科学 人工智能 地质学 海洋学
作者
Dmytro Mishkin,Jǐŕı Matas,Michal Perďoch,Karel Lenc
标识
DOI:10.5244/c.29.12
摘要

Generalization of the baseline two-view matching problem WXBS X stands for different subsets of “wide baselines in acquisition conditions. • Novel dataset of ground-truthed image pairs which include multiple wide baselines“ • We show that state-of-the art matchers fail on almost all image pairs. • WxBS-M a novel matching algorithm for the WXBS problem is introduced. We show experimentally that the WXBS-M matcher dominates the state-of-the-art methods both on the new and existing datasets Take away • SIFT family is still the best local descriptor, outperforms novel CNN [SiamNet2015] approaches. • (adaptive) Hessian-Affine is the best detector with broad applicability • Affine view synthesis greatly helps for non-geometrical problems. • Datasets and WxBS-Matcher available http://cmp.felk.cvut.cz/wbs/ • We need more diverse datasets for learning local descriptors than Yosemite and Liberty References WABS – Wide Appearance Baseline Stereo no photometric normalization with photo normalization (mean 0.5, var 0.2) WGBS – Wide Geometry Baseline Stereo WLBS – Wide iLlumination Baseline Stereo WSBS – Wide Sensor Baseline Stereo no photometric normalization with photo normalization (mean 0.5, var 0.2) no photometric normalization with photo normalization (mean 0.5, var 0.2) WGBS summary • SIFT family dominates • Photo-L2 normalized pixel intensities is a strong descriptor • ConvNet [SiamNet15] worse than SIFT (at least when not trained to handle large transformations) • Other descriptor not competitive *Images from Extreme View (EVD) and Oxford-Affine(OxAff) Datasets • SIFT family dominates • ConvNet [SiamNet15] worse than SIFT (at least when not trained to handle illumination transformations) • Other descriptor not competitive WLBS summary • SIFT family dominates • ConvNet [SiamNet15] performs poorly (not trained for photometric distortions) • Other descriptor not competitive WABS summary no photometric normalization with photo normalization (mean 0.5, var 0.2) • No descriptor performance acceptable • Only gradient folding in HalfSIFT works (poorly) • Note the Recall range [0, 0.14] indicating high difficulty WSBS summary Map2Photo: WABS special case with photo normalization (mean 0.5, var 0.2) no photometric normalization • Special (learned?) descriptor is needed for map-photo matching • Note the Recall range [0, 0.06] indicating extreme difficulty of map vs. photo matching *Images from SymBench, GDBootstrap, EgdeFoci (EF) datasets *Images from SymBench, VPRiCE 2015, EgdeFoci (EF) datasets *Images from GDBstrap and MMS datasets *map2ph dataset with this paper • [SiamNet15] S. Zagoruyko, N. Komodakis. Learning to Compare Image Patches via Convolutional Neural Networks. In CVPR 2015 • [HalfSIFT10] J. Chen, J. Tian, N. Lee, J. Zheng, R. Smith, and A. Laine. A partial intensity invariant feature descriptor for multimodal retinal image registration. Biomedical Engineering, IEEE Transactions on, 2010. • [MODS15] D. Mishkin and J. Matas and M. Perdoch. MODS: Fast and Robust Method for Two-View Matching. Accepted to CVIU, 2015. • [DEGENSAC05] O.Chum, T. Werner, J. Matas. Two-view Geometry Estimation Unaffected by a Dominant Plane. In CVPR 2005 5. 1st geom. Inconsistent rule: use for second nearest distance ratio only patches, which are inconsistent with closest one (yellow, not red) 6. Filter duplicates: discard redetections (red patches) HalfSIFT bin SIFT bin 2. Adaptive thresholding: if #HesAffs < θHesAff, lower the detection threshold 3. HalfRootSIFT: 1. Affine view synthesis WxBS-Matcher Input: I1, I2two images, Θmminimum required number of matches, Smaxmaximum number of iterations Output: Fundamental or homography matrix F or H; a list of corresponding local features while Nmatches < Θm and Iter < Smax do for I1and I2separately do 1 Generate synthetic views according to the scale-tilt-rotation-detector setup for Iter 2 Detect local features using adaptive thresholding 3 Extract rotation invariant descriptors with: 3a RootSIFT and 3b HalfRootSIFT 4 Reproject local features to I1, I2 end for 5 Generate tentative correspondences based on 1st geom. Inconsistent rule for RootSIFT and HalfRootSIFT separately using kD-tree 6 Filter duplicates 7 Geometric verification of all TC with modified DEGENSAC estimating F or H 8 Check geometric consistency of the local affine features with est. F or H end while TILDE detector results are post-CR deadline Best results among single detectors (AdHesAf) and view-synth based matchers (WxBS-M) Detector and matcher comparison

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助wenwen采纳,获得20
1秒前
努力加油煤老八完成签到 ,获得积分10
1秒前
可可发布了新的文献求助10
1秒前
务实白开水完成签到 ,获得积分10
4秒前
菜头完成签到,获得积分10
8秒前
1.1完成签到,获得积分10
9秒前
MY完成签到,获得积分10
10秒前
11秒前
一只小羊发布了新的文献求助10
13秒前
1.1发布了新的文献求助10
13秒前
14秒前
15秒前
jjj完成签到,获得积分10
15秒前
15秒前
15秒前
怡然幼枫发布了新的文献求助10
16秒前
快飞飞完成签到 ,获得积分10
16秒前
韦老虎发布了新的文献求助10
17秒前
科研通AI5应助朱浩强采纳,获得10
17秒前
盖世英雄的小超人完成签到,获得积分10
19秒前
魔幻的紊发布了新的文献求助10
20秒前
RATHER发布了新的文献求助10
21秒前
26秒前
自觉秋灵完成签到,获得积分10
26秒前
27秒前
LZJ完成签到 ,获得积分10
28秒前
28秒前
失眠语海完成签到 ,获得积分10
29秒前
小二郎应助晚生四时采纳,获得10
29秒前
科研通AI5应助Zhengkeke采纳,获得10
29秒前
暴躁汉堡完成签到,获得积分10
31秒前
沉甸甸发布了新的文献求助10
32秒前
落寞白曼完成签到,获得积分10
32秒前
愉快的宛儿完成签到,获得积分10
32秒前
32秒前
32秒前
个性襄发布了新的文献求助10
33秒前
韦老虎完成签到,获得积分10
35秒前
djf发布了新的文献求助10
35秒前
星辰大海应助魔幻的紊采纳,获得10
36秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776514
求助须知:如何正确求助?哪些是违规求助? 3321990
关于积分的说明 10208390
捐赠科研通 3037297
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757872