Forecast of AMD Quantity by a Series Tank Model in Three Stages: Case Studies in Two Closed Japanese Mines

融雪 环境科学 气象学 日照时长 气候学 大气科学 相对湿度 地质学 物理
作者
Chiharu Tokoro,Kenichiro Fukaki,Masakazu Kadokura,Shigeshi Fuchida
出处
期刊:Minerals [Multidisciplinary Digital Publishing Institute]
卷期号:10 (5): 430-430 被引量:11
标识
DOI:10.3390/min10050430
摘要

There are about 100 sites of acid mine drainage (AMD) from abandoned/closed mines in Japan. For their sustainable treatment, future prediction of AMD quantity is crucial. In this study, AMD quantity was predicted for two closed mines in Japan based on a series tank model in three stages. The tank model parameters were determined from the relationship between the observed AMD quantity and the inflow of rainfall and snowmelt by using the Kalman filter and particle swarm optimization methods. The Automated Meteorological Data Acquisition System (AMeDAS) data of rainfall were corrected for elevation and by the statistical daily fluctuation model. The snowmelt was estimated from the AMeDAS data of rainfall, temperature, and sunshine duration by using mass and heat balance of snow. Fitting with one year of daily data was sufficient to obtain the AMD quantity model. Future AMD quantity was predicted by the constructed model using the forecast data of rainfall and temperature proposed by the Max Planck Institute–Earth System Model (MPI–ESM), based on the Intergovernmental Panel on Climate Change (IPCC) representative concentration pathway (RCP) 2.6 and RCP8.5 scenarios. The results showed that global warming causes an increase in the quantity and fluctuation of AMD, especially for large reservoirs and residence time of AMD. There is a concern that for mines with large AMD quantities, AMD treatment will be unstable due to future global warming.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冰魂应助lemonyu采纳,获得10
刚刚
刚刚
昏睡的蟠桃应助不敢装睡采纳,获得200
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
Owen应助CY采纳,获得10
4秒前
5秒前
Sam发布了新的文献求助10
6秒前
7秒前
顾矜应助Hamed22采纳,获得10
8秒前
罗浩禹发布了新的文献求助20
9秒前
wzy13647744027完成签到,获得积分10
9秒前
冰魂应助Yezo采纳,获得30
11秒前
14秒前
14秒前
hu完成签到,获得积分20
18秒前
20秒前
jeep先生完成签到,获得积分10
20秒前
Sam完成签到,获得积分10
20秒前
CY发布了新的文献求助10
20秒前
22秒前
Orange应助鱼鱼鱼采纳,获得10
24秒前
小样完成签到,获得积分10
24秒前
Hamed22发布了新的文献求助10
26秒前
认真生活发布了新的文献求助10
26秒前
量子星尘发布了新的文献求助10
28秒前
wuda完成签到,获得积分10
28秒前
孙玮完成签到,获得积分10
29秒前
鱼鱼鱼完成签到,获得积分10
30秒前
31秒前
hyan完成签到 ,获得积分10
34秒前
小稻草人应助hu采纳,获得10
35秒前
科研通AI5应助BUG采纳,获得10
35秒前
自由念露完成签到 ,获得积分10
37秒前
38秒前
SciGPT应助愉快觅露采纳,获得10
41秒前
123456完成签到 ,获得积分10
42秒前
样子完成签到,获得积分10
42秒前
完美世界应助cm515531采纳,获得10
43秒前
龙腾岁月发布了新的文献求助10
43秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864759
求助须知:如何正确求助?哪些是违规求助? 3407235
关于积分的说明 10653081
捐赠科研通 3131206
什么是DOI,文献DOI怎么找? 1726904
邀请新用户注册赠送积分活动 832093
科研通“疑难数据库(出版商)”最低求助积分说明 780124