BAMB

特征选择 水准点(测量) 计算机科学 特征(语言学) 假阳性悖论 选择(遗传算法) 数据挖掘 人工智能 机器学习 大地测量学 语言学 哲学 地理
作者
Zhaolong Ling,Kui Yu,Hao Wang,Lin Liu,Wei Ding,Xindong Wu
出处
期刊:ACM Transactions on Intelligent Systems and Technology [Association for Computing Machinery]
卷期号:10 (5): 1-25 被引量:50
标识
DOI:10.1145/3335676
摘要

The discovery of Markov blanket (MB) for feature selection has attracted much attention in recent years, since the MB of the class attribute is the optimal feature subset for feature selection. However, almost all existing MB discovery algorithms focus on either improving computational efficiency or boosting learning accuracy, instead of both. In this article, we propose a novel MB discovery algorithm for balancing efficiency and accuracy, called <underline>BA</underline>lanced <underline>M</underline>arkov <underline>B</underline>lanket (BAMB) discovery. To achieve this goal, given a class attribute of interest, BAMB finds candidate PC (parents and children) and spouses and removes false positives from the candidate MB set in one go. Specifically, once a feature is successfully added to the current PC set, BAMB finds the spouses with regard to this feature, then uses the updated PC and the spouse set to remove false positives from the current MB set. This makes the PC and spouses of the target as small as possible and thus achieves a trade-off between computational efficiency and learning accuracy. In the experiments, we first compare BAMB with 8 state-of-the-art MB discovery algorithms on 7 benchmark Bayesian networks, then we use 10 real-world datasets and compare BAMB with 12 feature selection algorithms, including 8 state-of-the-art MB discovery algorithms and 4 other well-established feature selection methods. On prediction accuracy, BAMB outperforms 12 feature selection algorithms compared. On computational efficiency, BAMB is close to the IAMB algorithm while it is much faster than the remaining seven MB discovery algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
诺木发布了新的文献求助10
1秒前
1秒前
hou完成签到 ,获得积分10
1秒前
youyou1990发布了新的文献求助10
1秒前
1秒前
鹤轸发布了新的文献求助10
1秒前
1秒前
weilan完成签到,获得积分10
2秒前
靓丽紫真完成签到 ,获得积分10
2秒前
聪明怜阳完成签到,获得积分10
3秒前
研友_VZG7GZ应助jnn采纳,获得10
3秒前
3秒前
sunyz举报雪白胡萝卜求助涉嫌违规
3秒前
璐璐驳回了SciGPT应助
4秒前
4秒前
一帆风顺发布了新的文献求助20
4秒前
早日暴富发布了新的文献求助10
4秒前
神经娃完成签到,获得积分10
5秒前
6秒前
6秒前
科目三应助田小姐采纳,获得10
6秒前
6秒前
彩色的以莲完成签到,获得积分10
7秒前
酷波er应助kk99采纳,获得10
7秒前
7秒前
科研通AI5应助dllllll采纳,获得10
7秒前
7秒前
7秒前
8秒前
爆米花应助花花采纳,获得10
8秒前
皮皮虾完成签到,获得积分10
9秒前
小兔叽完成签到,获得积分10
9秒前
Ly啦啦啦发布了新的文献求助10
9秒前
科研通AI5应助佩佩采纳,获得10
9秒前
吃货完成签到,获得积分10
10秒前
cdercder应助轻松的茉莉采纳,获得10
10秒前
12秒前
柯续缘发布了新的文献求助10
12秒前
上好佳完成签到,获得积分10
12秒前
12秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834484
求助须知:如何正确求助?哪些是违规求助? 3376988
关于积分的说明 10496011
捐赠科研通 3096514
什么是DOI,文献DOI怎么找? 1704953
邀请新用户注册赠送积分活动 820381
科研通“疑难数据库(出版商)”最低求助积分说明 772011