Using a Hybrid Deep Neural Network for Gas Classification

人工智能 计算机科学 支持向量机 电子鼻 人工神经网络 卷积神经网络 深度学习 模式识别(心理学) 分类器(UML) 多层感知器 神经毒气 感知器 统计分类 特征提取 机器学习 线性分类器 数据分类 特征向量 反向传播 数据建模 监督学习 数据挖掘 特征学习
作者
Syuan-He Wang,Ting-I Chou,Shih-Wen Chiu,Kea‐Tiong Tang
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:21 (5): 6401-6407 被引量:59
标识
DOI:10.1109/jsen.2020.3038304
摘要

In terms of electronic nose algorithms, data pre-processing and classifier type are the two main factors affecting gas classification results. In the early stage, data pre-processing mostly takes specific information from gas-reaction waveforms as features and uses machine learning algorithms, such as K-Nearest Neighbor(KNN) and Support Vector Machine(SVM), to classify the gas data. In recent years, some research has been done on using deep learning for gas classification. The data pre-processing takes the overall process of the gas reaction as a feature map, and the classifier uses Convolutional Neural Network(CNN) architecture to classify the gases, resulting in classification accuracy being significantly higher than those of traditional machine learning algorithms. In addition, external factors such as wind speed, and distance from the gas source are also important factors affecting gas classification. The objectives of this study are as follows: 1) improving the data pre-processing method and classifier structure in deep learning for gas analysis and 2) using hybrid deep neural networks with Multilayer Perceptron (MLP) for environment compensation to improve the sensor drift problem caused by external factors. This study used one open-source gas dataset, applied three data pre-processing methods and two deep learning architectures (GasNet, SimResNet-9) for gas analysis and comparison, selected the method with the best classification accuracy and used it in Deep Neural Networks with MLP environmental compensation to promote the accuracy of classification further by learning the relationship between external factors and gas data. The proposed SimResNet-10_X_MLP was used for data training and classification in this study, achieving a 95% classification accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
DCC发布了新的文献求助10
1秒前
CipherSage应助西西采纳,获得10
4秒前
4秒前
努力加油干的小猫咪完成签到,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
6秒前
梨花月应助白嫖论文采纳,获得10
6秒前
8秒前
8秒前
红星路吃饼子的派大星完成签到 ,获得积分10
8秒前
9秒前
英俊的铭应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
wanci应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
Orange应助科研通管家采纳,获得50
9秒前
英姑应助科研通管家采纳,获得10
10秒前
CodeCraft应助科研通管家采纳,获得10
10秒前
zcl应助科研通管家采纳,获得150
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
GPTea应助科研通管家采纳,获得150
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
斯文败类应助科研通管家采纳,获得20
11秒前
研友_VZG7GZ应助科研通管家采纳,获得10
11秒前
所所应助科研通管家采纳,获得10
11秒前
Zx_1993应助科研通管家采纳,获得20
11秒前
11秒前
JamesPei应助科研通管家采纳,获得10
11秒前
催化民工发布了新的文献求助30
12秒前
浮游应助是我呀吼采纳,获得10
13秒前
13秒前
14秒前
可爱的函函应助land采纳,获得10
14秒前
郭枫完成签到,获得积分10
15秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5133576
求助须知:如何正确求助?哪些是违规求助? 4334702
关于积分的说明 13504381
捐赠科研通 4171698
什么是DOI,文献DOI怎么找? 2287273
邀请新用户注册赠送积分活动 1288197
关于科研通互助平台的介绍 1229045