计算机科学
雷达
卷积神经网络
干扰(通信)
干扰
人工智能
Echo(通信协议)
鉴定(生物学)
核(代数)
性格(数学)
深度学习
模式识别(心理学)
人工神经网络
语音识别
电信
数学
几何学
热力学
生物
计算机网络
频道(广播)
物理
植物
组合数学
作者
Qingyuan Zhao,Yang Liu,Linjie Cai,Yaobing Lu
出处
期刊:2019 IEEE International Conference on Signal, Information and Data Processing (ICSIDP)
日期:2019-12-01
卷期号:: 1-5
被引量:12
标识
DOI:10.1109/icsidp47821.2019.9172911
摘要
In this paper, we apply the idea of deep learning to radar interference recognition. Firstly we introduced history and concept of Convolutional Neural Network, and summarized the method of interference recognition. Secondly, the structure of improved LeNet CNN is described, considering the character of radar echo wave. Thirdly, 7 kinds of jamming are introduced. Fourthly, several important parameters of net structure such as kernel size and batch size are adjusted to achieve best performance, through measured interference radar echo. The accuracy rate reaches up to 99.7%. Finally, we summarize advantages of the method proposed in this paper.
科研通智能强力驱动
Strongly Powered by AbleSci AI