超级电容器
介孔材料
过渡金属
电解质
钴
镍
材料科学
硫化物
硫化镍
电化学
比能量
化学工程
锰
电极
无机化学
硫化钴
化学
催化作用
冶金
物理化学
有机化学
热力学
工程类
物理
作者
Jianghang Cao,Yuzhen Hu,Yuying Zhu,Haijie Cao,Meiqiang Fan,Chenghao Huang,Kangying Shu,Maoxia He,Haichao Chen
标识
DOI:10.1016/j.cej.2020.126928
摘要
Nickel-cobalt-manganese sulfide (NiCoMn-S) with a mesoporous structure was synthesized as the electroactive battery materials for hybrid supercapacitors. The synergy between transition metals of NiCoMn-S was investigated theoretically by performing density functional theory calculations and experimentally by comparing the charge storage properties of sulfides with different transition metals. It is found that the Mn composition can activate the 3d electrons of Co and enhance affinity of NiCo–S with electrolyte ions, leading to synergy between transition metals for enhanced electrochemical activity and rate performance. The Mn composition also increases the specific area for more electroactive sites and reduces the charge transfer resistance of sulfides. In addition, it is found that the Mn and Ni compositions can greatly enhance the charge storage activity of sulfide, and the Co composition greatly improves the rate performance. The strong synergy between Ni, Co and Mn results in enhanced specific capacity, high rate performance and excellent cycling stability. The NiCoMn-S exhibits a specific capacity of 661 C g−1 at 1 A g−1, which retains 440 C g−1 at 50 A g−1. More significantly, the NiCoMn-S demonstrates well matched performance with the capacitive RGO electrode, and the resulting hybrid supercapacitor (HSC) demonstrates both high power and high energy performances. The HSC exhibits a specific energy of 42.1 Wh kg−1 at a specific power of 750 W kg−1, and showing a specific energy of 13.2 Wh kg−1 at a specific power of 22.5 kW kg−1.
科研通智能强力驱动
Strongly Powered by AbleSci AI