Degradation mechanisms of proton exchange membrane fuel cell under typical automotive operating conditions

质子交换膜燃料电池 奥斯特瓦尔德成熟 阳极 材料科学 化学 化学工程 降级(电信) 工程类 纳米技术 电极 电气工程 生物化学 物理化学
作者
Peng Ren,Pucheng Pei,Yuehua Li,Ziyao Wu,Dongfang Chen,Shangwei Huang
出处
期刊:Progress in Energy and Combustion Science [Elsevier BV]
卷期号:80: 100859-100859 被引量:489
标识
DOI:10.1016/j.pecs.2020.100859
摘要

The proton exchange membrane (PEM) fuel cell is an ideal automotive power source with great potential, owing to its high efficiency and zero emissions. However, the durability and life-span limit its large-scale application. Complex automotive operating conditions significantly accelerate fuel cell aging, and result in diverse degradation mechanisms that require comprehensive understanding. This review focuses on three harsh conditions of open-circuit/idling, dynamic load, and startup-shutdown. In-situ and ex-situ accelerated stress tests (ASTs) for the three conditions are summarized in terms of methodology, research objectives, and conditions of application. Reversible decay may arise during ASTs and lead to an over-estimation of the aging state, of which the causes and recovery procedures are emphasized. The degradation mechanisms are elaborated systematically according to parameter characteristics, microstructure, and aging reactions. First, increased gas permeation and a high cathode potential during open-circuit/idling combine to intensify generation of free radicals that cause membrane degradation. Pt degradation and migration are also accelerated, characterized by increased Pt particle growth and precipitation in the membrane. The debate regarding the effect of Pt precipitation on membrane degradation is resolved based on a literature review. Second, dynamic load brings about changes in the thermal/humidity state, altered reactant demand, and potential cycling, which lead to mechanical degradation, gas starvation, and Pt particle growth, respectively. To account for the accelerated particle growth, electrochemical Ostwald ripening and increased Pt dissolution are reviewed. Third, an air/hydrogen boundary appears in the anode under startup-shutdown condition and causes carbon corrosion in the local cathode via the reverse current mechanism. The cathode thereby suffers from severe and non-uniform structural damage and even structural collapse, accompanied by Pt agglomeration and detachment. Meanwhile, difficulties in mass transfer arise because of ionomer redistribution, decreased porosity, and carbon surface hydrophilization. In addition, cold start produces severe damage to component structures. This paper seeks to guide further investigation into improved fuel cell durability via mechanism analysis, condition optimization, control strategy development, structural design of the membrane electrode assembly, and component material development.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
妙妙脆角完成签到,获得积分10
1秒前
聪明摩托完成签到,获得积分10
2秒前
轻松连虎完成签到,获得积分10
2秒前
完美世界应助阿冰采纳,获得10
4秒前
小杨完成签到,获得积分20
4秒前
5秒前
6秒前
小颖完成签到,获得积分10
6秒前
深情安青应助wjw采纳,获得30
7秒前
冰魂应助小宋采纳,获得10
8秒前
9秒前
陈半喆完成签到,获得积分10
9秒前
Doctor_Peng完成签到,获得积分10
9秒前
lizhen发布了新的文献求助10
10秒前
Cheryy发布了新的文献求助10
10秒前
小颖发布了新的文献求助10
11秒前
小杨发布了新的文献求助10
11秒前
傅荣轩完成签到,获得积分10
11秒前
HR112应助wxyes采纳,获得10
12秒前
13秒前
abys发布了新的文献求助10
13秒前
13秒前
科研通AI5应助小月986采纳,获得10
14秒前
15秒前
Jasper应助吴晓敏采纳,获得10
15秒前
靓丽访枫发布了新的文献求助10
15秒前
干净的青梦完成签到,获得积分10
17秒前
Hello应助迷人的帅哥采纳,获得10
17秒前
18秒前
顾矜应助Yi采纳,获得10
18秒前
phj完成签到 ,获得积分10
19秒前
藏羚羊完成签到,获得积分10
19秒前
nzz完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
琮博发布了新的文献求助10
20秒前
12345发布了新的文献求助10
22秒前
22秒前
22秒前
23秒前
23秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Learning to Listen, Listening to Learn 520
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3867412
求助须知:如何正确求助?哪些是违规求助? 3409750
关于积分的说明 10664834
捐赠科研通 3133968
什么是DOI,文献DOI怎么找? 1728716
邀请新用户注册赠送积分活动 833058
科研通“疑难数据库(出版商)”最低求助积分说明 780550