ff19SB: Amino-Acid-Specific Protein Backbone Parameters Trained against Quantum Mechanics Energy Surfaces in Solution

拉马钱德兰地块 二面角 分子动力学 力场(虚构) 分子力学 生物分子 构象异构 化学 氨基酸 生物系统 统计物理学 计算化学 物理 蛋白质结构 分子 量子力学 生物 生物化学 氢键
作者
Chuan Tian,Koushik Kasavajhala,Kellon Belfon,Lauren Raguette,He Huang,Angela N. Migues,John D. Bickel,Yuzhang Wang,Jorge Pincay,Qin Wu,Carlos Simmerling
出处
期刊:Journal of Chemical Theory and Computation [American Chemical Society]
卷期号:16 (1): 528-552 被引量:1360
标识
DOI:10.1021/acs.jctc.9b00591
摘要

Molecular dynamics (MD) simulations have become increasingly popular in studying the motions and functions of biomolecules. The accuracy of the simulation, however, is highly determined by the molecular mechanics (MM) force field (FF), a set of functions with adjustable parameters to compute the potential energies from atomic positions. However, the overall quality of the FF, such as our previously published ff99SB and ff14SB, can be limited by assumptions that were made years ago. In the updated model presented here (ff19SB), we have significantly improved the backbone profiles for all 20 amino acids. We fit coupled φ/ψ parameters using 2D φ/ψ conformational scans for multiple amino acids, using as reference data the entire 2D quantum mechanics (QM) energy surface. We address the polarization inconsistency during dihedral parameter fitting by using both QM and MM in aqueous solution. Finally, we examine possible dependency of the backbone fitting on side chain rotamer. To extensively validate ff19SB parameters, and to compare to results using other Amber models, we have performed a total of ∼5 ms MD simulations in explicit solvent. Our results show that after amino-acid-specific training against QM data with solvent polarization, ff19SB not only reproduces the differences in amino-acid-specific Protein Data Bank (PDB) Ramachandran maps better but also shows significantly improved capability to differentiate amino-acid-dependent properties such as helical propensities. We also conclude that an inherent underestimation of helicity is present in ff14SB, which is (inexactly) compensated for by an increase in helical content driven by the TIP3P bias toward overly compact structures. In summary, ff19SB, when combined with a more accurate water model such as OPC, should have better predictive power for modeling sequence-specific behavior, protein mutations, and also rational protein design. Of the explicit water models tested here, we recommend use of OPC with ff19SB.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
量子星尘发布了新的文献求助10
4秒前
每文发布了新的文献求助10
4秒前
wen发布了新的文献求助10
7秒前
7秒前
8秒前
Jeremy发布了新的文献求助10
8秒前
alile完成签到,获得积分10
8秒前
8秒前
王小美发布了新的文献求助10
10秒前
PAPA发布了新的文献求助10
10秒前
英俊的铭应助xr采纳,获得10
11秒前
11秒前
柯岩完成签到,获得积分10
11秒前
华仔应助快乐茗采纳,获得10
12秒前
白云垛发布了新的文献求助10
12秒前
小鸣完成签到 ,获得积分10
14秒前
隐形曼青应助万灵竹采纳,获得10
14秒前
NeoWu发布了新的文献求助10
16秒前
田一完成签到,获得积分10
18秒前
每文完成签到,获得积分10
19秒前
迷你的觅云完成签到,获得积分10
20秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
华仔应助白云垛采纳,获得30
23秒前
Jasper应助亦玉采纳,获得10
24秒前
25秒前
Lucky小M完成签到,获得积分10
26秒前
曾经的彩虹完成签到,获得积分10
27秒前
27秒前
CodeCraft应助Rita采纳,获得10
28秒前
ZOZO发布了新的文献求助10
29秒前
万灵竹发布了新的文献求助10
31秒前
31秒前
依小米完成签到 ,获得积分10
32秒前
十一发布了新的文献求助20
33秒前
宇宙中心发布了新的文献求助10
35秒前
量子星尘发布了新的文献求助10
39秒前
40秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Logical form: From GB to Minimalism 5000
Qualitative Inquiry and Research Design: Choosing Among Five Approaches 5th Edition 2000
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1800
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Biocontamination Control for Pharmaceuticals and Healthcare 2nd Edition 1300
Stereoelectronic Effects 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4202756
求助须知:如何正确求助?哪些是违规求助? 3737404
关于积分的说明 11768221
捐赠科研通 3409591
什么是DOI,文献DOI怎么找? 1870750
邀请新用户注册赠送积分活动 926225
科研通“疑难数据库(出版商)”最低求助积分说明 836473