Optimal Dynamic Matching Under Impatient Demand and Patient Supply

匹配(统计) 质量(理念) 激励 排队 微观经济学 计算机科学 供应链 供求关系 经济 数学优化 业务 计算机网络 数学 哲学 认识论 营销 统计
作者
Zhiyuan Chen,Ming Hu,Yun Zhou
摘要

We consider an infinite-horizon dynamic matching problem where the agents on one side, say supply side, are long-lived, and those on the other, say demand side, are impatient and will get lost if unmatched upon arrival. The agents on either side are vertically differentiated with a high- or low-quality level and arrive at the platform sequentially. The matching reward has a supermodular structure, more specifically, it is the multiplication of quality levels of agents in a match. In a centralized setting, we show that the optimal matching priority is different from assortative mating that is optimal for a system with agents on both sides long-lived (see Baccara et al. 2016). In the lost sales setting, it is optimal to still prioritize high-quality supply over low-quality one to satisfy high-quality demand; however, for the low-quality demand, low-quality supply has priority. This is because the centralized planner has an incentive to hold high-quality supply for future arrivals of high-quality demand. In a decentralized setting where the matching reward is split between agents in a match, in equilibrium, a similar protocol prevails, but the expected queues are inefficiently long or short. We show that in some cases the decentralized matching process can be perfectly coordinated as the centralized one by only adjusting the reward allocation to high-quality supply.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
振江完成签到,获得积分10
1秒前
baibai完成签到,获得积分10
1秒前
Akim应助否极泰来采纳,获得10
1秒前
Fangyuan发布了新的文献求助10
1秒前
研友_5Zl9D8发布了新的文献求助10
1秒前
苦无完成签到,获得积分10
2秒前
登山人发布了新的文献求助10
3秒前
3秒前
丘比特应助baroque采纳,获得10
3秒前
妙手回春板蓝根完成签到,获得积分10
4秒前
自信羊完成签到,获得积分20
4秒前
轩子墨发布了新的文献求助10
4秒前
里里完成签到,获得积分10
4秒前
xiami完成签到,获得积分10
6秒前
7秒前
lx完成签到,获得积分10
7秒前
8秒前
9秒前
星辰大海应助Fangyuan采纳,获得10
9秒前
天才莫拉尔完成签到,获得积分10
11秒前
yelv123完成签到,获得积分10
11秒前
baroque完成签到 ,获得积分10
14秒前
14秒前
共享精神应助登山人采纳,获得10
15秒前
鬲木发布了新的文献求助10
15秒前
Jasper应助大气的以寒采纳,获得10
16秒前
18秒前
科研通AI5应助麦子采纳,获得10
20秒前
20秒前
hukun100完成签到,获得积分10
22秒前
探讨发布了新的文献求助10
22秒前
LILILI完成签到,获得积分10
24秒前
25秒前
地表飞猪发布了新的文献求助10
26秒前
Jasper应助Yve采纳,获得30
26秒前
完美世界应助123采纳,获得10
28秒前
登山人发布了新的文献求助10
30秒前
充电宝应助科研通管家采纳,获得10
31秒前
思源应助科研通管家采纳,获得10
31秒前
英俊的铭应助科研通管家采纳,获得10
31秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789463
求助须知:如何正确求助?哪些是违规求助? 3334462
关于积分的说明 10270181
捐赠科研通 3050926
什么是DOI,文献DOI怎么找? 1674234
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760742