An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications

偏微分方程 有限元法 离散化 计算机科学 搭配(遥感) 功能(生物学) 计算力学 灵活性(工程) 数学优化 数学 应用数学 机器学习 数学分析 统计 物理 进化生物学 生物 热力学
作者
Esteban Samaniego,Cosmin Anitescu,Somdatta Goswami,Vien Minh Nguyen‐Thanh,Hongwei Guo,Khader M. Hamdia,Xiaoying Zhuang,Timon Rabczuk
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:362: 112790-112790 被引量:1401
标识
DOI:10.1016/j.cma.2019.112790
摘要

Partial Differential Equations (PDE) are fundamental to model different phenomena in science and engineering mathematically. Solving them is a crucial step towards a precise knowledge of the behaviour of natural and engineered systems. In general, in order to solve PDEs that represent real systems to an acceptable degree, analytical methods are usually not enough. One has to resort to discretization methods. For engineering problems, probably the best known option is the finite element method (FEM). However, powerful alternatives such as mesh-free methods and Isogeometric Analysis (IGA) are also available. The fundamental idea is to approximate the solution of the PDE by means of functions specifically built to have some desirable properties. In this contribution, we explore Deep Neural Networks (DNNs) as an option for approximation. They have shown impressive results in areas such as visual recognition. DNNs are regarded here as function approximation machines. There is great flexibility to define their structure and important advances in the architecture and the efficiency of the algorithms to implement them make DNNs a very interesting alternative to approximate the solution of a PDE. We concentrate in applications that have an interest for Computational Mechanics. Most contributions that have decided to explore this possibility have adopted a collocation strategy. In this contribution, we concentrate in mechanical problems and analyze the energetic format of the PDE. The energy of a mechanical system seems to be the natural loss function for a machine learning method to approach a mechanical problem. As proofs of concept, we deal with several problems and explore the capabilities of the method for applications in engineering.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贝贝贝完成签到,获得积分10
1秒前
1秒前
搞对发布了新的文献求助10
1秒前
科研通AI2S应助tong77采纳,获得10
1秒前
1秒前
叶公子发布了新的文献求助10
1秒前
1秒前
思源应助负责的调料汁采纳,获得10
2秒前
yaozi完成签到,获得积分10
2秒前
2秒前
bkagyin应助Serena采纳,获得10
2秒前
Shan发布了新的文献求助10
2秒前
2秒前
Elaine完成签到,获得积分10
3秒前
TheDay完成签到,获得积分10
3秒前
彼岸ing完成签到,获得积分20
3秒前
sanwan发布了新的文献求助10
3秒前
loki完成签到,获得积分10
4秒前
月亮门儿完成签到 ,获得积分10
4秒前
4秒前
得一完成签到,获得积分10
4秒前
而发的完成签到,获得积分10
4秒前
5秒前
鸣笛应助ll采纳,获得10
5秒前
研友_祝鬼神完成签到,获得积分10
5秒前
SYLH应助youyuguang采纳,获得10
5秒前
5秒前
6秒前
深情安青应助小水采纳,获得10
6秒前
糖味儿发布了新的文献求助10
6秒前
6秒前
nuo发布了新的文献求助10
6秒前
赘婿应助linmo采纳,获得10
6秒前
6秒前
小叙发布了新的文献求助10
7秒前
7秒前
凌寻冬发布了新的文献求助10
8秒前
A_child完成签到,获得积分10
8秒前
8秒前
xinyang2448完成签到,获得积分10
8秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
A First Course in Bayesian Statistical Methods 400
American Historical Review - Volume 130, Issue 2, June 2025 (Full Issue) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3912527
求助须知:如何正确求助?哪些是违规求助? 3457737
关于积分的说明 10897319
捐赠科研通 3184017
什么是DOI,文献DOI怎么找? 1760006
邀请新用户注册赠送积分活动 851258
科研通“疑难数据库(出版商)”最低求助积分说明 792586