EIS-Net: Segmenting early infarct and scoring ASPECTS simultaneously on non-contrast CT of patients with acute ischemic stroke

医学 分割 组内相关 卷积神经网络 人工智能 放射科 模式识别(心理学) 计算机科学 心理测量学 临床心理学
作者
Hulin Kuang,Bijoy K. Menon,Sung‐Il Sohn,Wu Qiu
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:70: 101984-101984 被引量:67
标识
DOI:10.1016/j.media.2021.101984
摘要

Detecting early infarct (EI) plays an essential role in patient selection for reperfusion therapy in the management of acute ischemic stroke (AIS). EI volume at acute or hyper-acute stage can be measured using advanced pre-treatment imaging, such as MRI and CT perfusion. In this study, a novel multi-task learning approach, EIS-Net, is proposed to segment EI and score Alberta Stroke Program Early CT Score (ASPECTS) simultaneously on baseline non-contrast CT (NCCT) scans of AIS patients. The EIS-Net comprises of a 3D triplet convolutional neural network (T-CNN) for EI segmentation and a multi-region classification network for ASPECTS scoring. T-CNN has triple encoders with original NCCT, mirrored NCCT, and atlas as inputs, as well as one decoder. A comparison disparity block (CDB) is designed to extract and enhance image contexts. In the decoder, a multi-level attention gate module (MAGM) is developed to recalibrate the features of the decoder for both segmentation and classification tasks. Evaluations using a high-quality dataset comprising of baseline NCCT and concomitant diffusion weighted MRI (DWI) as reference standard of 260 patients with AIS show that the proposed EIS-Net can accurately segment EI. The EIS-Net segmented EI volume strongly correlates with EI volume on DWI (r=0.919), and the mean difference between the two volumes is 8.5 mL. For ASPECTS scoring, the proposed EIS-Net achieves an intraclass correlation coefficient of 0.78 for total 10-point ASPECTS and a kappa of 0.75 for dichotomized ASPECTS (≤ 4 vs. >4). Both EI segmentation and ASPECTS scoring tasks achieve state-of-the-art performances.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
童绾绾发布了新的文献求助10
刚刚
酷酷纹完成签到,获得积分10
刚刚
和谐沛芹发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
Orange应助冰墨采纳,获得10
1秒前
1秒前
Twonej应助Accept采纳,获得30
1秒前
1秒前
123完成签到 ,获得积分10
1秒前
LINF完成签到,获得积分10
1秒前
2秒前
2秒前
dkkkkk发布了新的文献求助10
4秒前
djm完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
温馨发布了新的文献求助10
5秒前
6秒前
Jiang完成签到,获得积分10
6秒前
丸子完成签到,获得积分10
7秒前
hklz发布了新的文献求助10
7秒前
7秒前
8秒前
fghlqm完成签到,获得积分10
8秒前
所所应助RYAN采纳,获得10
8秒前
宣莫言发布了新的文献求助30
9秒前
科目三应助毅梦采纳,获得30
9秒前
肖肖完成签到,获得积分10
10秒前
zly完成签到,获得积分10
10秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
ymm216688完成签到,获得积分20
12秒前
今后应助RYAN采纳,获得10
12秒前
12秒前
111关闭了111文献求助
12秒前
桐桐应助77采纳,获得10
17秒前
冬去春来发布了新的文献求助10
17秒前
hklz完成签到,获得积分20
18秒前
18秒前
ymm216688关注了科研通微信公众号
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5713080
求助须知:如何正确求助?哪些是违规求助? 5213364
关于积分的说明 15269379
捐赠科研通 4864862
什么是DOI,文献DOI怎么找? 2611713
邀请新用户注册赠送积分活动 1561997
关于科研通互助平台的介绍 1519171