Accurate Learning of Graph Representations with Graph Multiset Pooling

联营 多集 计算机科学 理论计算机科学 电压图 空图形 图形 图形属性 折线图 人工智能 数学 组合数学
作者
Jinheon Baek,Minki Kang,Sung Ju Hwang
出处
期刊:Cornell University - arXiv 被引量:57
摘要

Graph neural networks have been widely used on modeling graph data, achieving impressive results on node classification and link prediction tasks. Yet, obtaining an accurate representation for a graph further requires a pooling function that maps a set of node representations into a compact form. A simple sum or average over all node representations considers all node features equally without consideration of their task relevance, and any structural dependencies among them. Recently proposed hierarchical graph pooling methods, on the other hand, may yield the same representation for two different graphs that are distinguished by the Weisfeiler-Lehman test, as they suboptimally preserve information from the node features. To tackle these limitations of existing graph pooling methods, we first formulate the graph pooling problem as a multiset encoding problem with auxiliary information about the graph structure, and propose a Graph Multiset Transformer (GMT) which is a multi-head attention based global pooling layer that captures the interaction between nodes according to their structural dependencies. We show that GMT satisfies both injectiveness and permutation invariance, such that it is at most as powerful as the Weisfeiler-Lehman graph isomorphism test. Moreover, our methods can be easily extended to the previous node clustering approaches for hierarchical graph pooling. Our experimental results show that GMT significantly outperforms state-of-the-art graph pooling methods on graph classification benchmarks with high memory and time efficiency, and obtains even larger performance gain on graph reconstruction and generation tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
llay发布了新的文献求助10
2秒前
热心子轩应助wst采纳,获得10
3秒前
无花果应助wst采纳,获得10
3秒前
简单冰岚完成签到,获得积分10
4秒前
与我常在发布了新的文献求助20
5秒前
桐桐应助Behappy采纳,获得10
5秒前
情怀应助Prime采纳,获得10
6秒前
yuko完成签到 ,获得积分10
6秒前
8秒前
8秒前
怕孤单的石头完成签到,获得积分10
10秒前
phylicia完成签到 ,获得积分10
11秒前
12秒前
HUI发布了新的文献求助10
13秒前
14秒前
y_z完成签到,获得积分10
14秒前
汤泽琪发布了新的文献求助10
15秒前
orixero应助等待采纳,获得10
15秒前
lshao完成签到 ,获得积分10
15秒前
16秒前
与我常在完成签到,获得积分20
16秒前
解语花发布了新的文献求助10
16秒前
CAI313完成签到,获得积分10
17秒前
所所应助还单身的寒云采纳,获得10
17秒前
打打应助SongXJ采纳,获得10
18秒前
小汪快跑发布了新的文献求助10
19秒前
Prime发布了新的文献求助10
19秒前
默默完成签到 ,获得积分10
19秒前
21秒前
HUI完成签到,获得积分10
22秒前
23秒前
淡淡的橘子完成签到,获得积分10
24秒前
abib完成签到,获得积分10
25秒前
何my完成签到 ,获得积分10
26秒前
26秒前
YaoHui发布了新的文献求助20
26秒前
leaolf应助空曲采纳,获得10
27秒前
28秒前
suxiaosi完成签到 ,获得积分10
29秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
La RSE en pratique 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4461622
求助须知:如何正确求助?哪些是违规求助? 3925175
关于积分的说明 12180262
捐赠科研通 3577399
什么是DOI,文献DOI怎么找? 1965330
邀请新用户注册赠送积分活动 1004081
科研通“疑难数据库(出版商)”最低求助积分说明 898634