Accurate Learning of Graph Representations with Graph Multiset Pooling

联营 多集 计算机科学 理论计算机科学 电压图 空图形 图形 图形属性 折线图 人工智能 数学 组合数学
作者
Jinheon Baek,Minki Kang,Sung Ju Hwang
出处
期刊:Cornell University - arXiv 被引量:57
摘要

Graph neural networks have been widely used on modeling graph data, achieving impressive results on node classification and link prediction tasks. Yet, obtaining an accurate representation for a graph further requires a pooling function that maps a set of node representations into a compact form. A simple sum or average over all node representations considers all node features equally without consideration of their task relevance, and any structural dependencies among them. Recently proposed hierarchical graph pooling methods, on the other hand, may yield the same representation for two different graphs that are distinguished by the Weisfeiler-Lehman test, as they suboptimally preserve information from the node features. To tackle these limitations of existing graph pooling methods, we first formulate the graph pooling problem as a multiset encoding problem with auxiliary information about the graph structure, and propose a Graph Multiset Transformer (GMT) which is a multi-head attention based global pooling layer that captures the interaction between nodes according to their structural dependencies. We show that GMT satisfies both injectiveness and permutation invariance, such that it is at most as powerful as the Weisfeiler-Lehman graph isomorphism test. Moreover, our methods can be easily extended to the previous node clustering approaches for hierarchical graph pooling. Our experimental results show that GMT significantly outperforms state-of-the-art graph pooling methods on graph classification benchmarks with high memory and time efficiency, and obtains even larger performance gain on graph reconstruction and generation tasks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Irving发布了新的文献求助10
2秒前
Van发布了新的文献求助10
2秒前
tian完成签到,获得积分10
3秒前
浮游应助科研通管家采纳,获得10
4秒前
王二应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
iNk应助科研通管家采纳,获得20
4秒前
可爱多应助科研通管家采纳,获得10
4秒前
笠柚应助科研通管家采纳,获得10
4秒前
小爪冰凉应助科研通管家采纳,获得10
4秒前
桐桐应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
我是老大应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
星辰大海应助科研通管家采纳,获得10
5秒前
小爪冰凉应助科研通管家采纳,获得10
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
桐桐应助科研通管家采纳,获得30
5秒前
lixiaolu发布了新的文献求助10
5秒前
布鲁克完成签到,获得积分10
5秒前
淡定成风应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
小爪冰凉应助科研通管家采纳,获得10
5秒前
FashionBoy应助科研通管家采纳,获得10
5秒前
那年樱花飘落完成签到,获得积分10
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633054
求助须知:如何正确求助?哪些是违规求助? 4728498
关于积分的说明 14984941
捐赠科研通 4791039
什么是DOI,文献DOI怎么找? 2558732
邀请新用户注册赠送积分活动 1519164
关于科研通互助平台的介绍 1479478