亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Self-powered high-sensitivity sensory memory actuated by triboelectric sensory receptor for real-time neuromorphic computing

神经形态工程学 感觉系统 摩擦电效应 计算机科学 人工神经网络 记忆电阻器 人工智能 神经科学 材料科学 电子工程 工程类 生物 复合材料
作者
Yaqian Liu,Wenyu Yang,Yujie Yan,Xiaomin Wu,Xiumei Wang,Yilun Zhou,Yuanyuan Hu,Huipeng Chen,Tailiang Guo
出处
期刊:Nano Energy [Elsevier]
卷期号:75: 104930-104930 被引量:87
标识
DOI:10.1016/j.nanoen.2020.104930
摘要

Artificial sensory memory, which is expected to collect, integrate, and refine massive sensory data timely for dynamically training the bioinspired neural network, is a promising candidate to achieve novel architectures of hardware artificial intelligence to mimic neural network. Unfortunately, the reports about artificial sensory memory are very limited and more importantly, there are still many unsolved problems in previously reported artificial sensory memory devices, such as the low sensitivity of perception receptors, high power consumption, and realization of instantaneous neuromorphic computing. Here, we propose a rapid-response, high-sensitivity, and self-powered artificial sensory memory, which is integrated with a triboelectric nanogenerator (TENG) and a field effect synaptic transistor, and is able to achieve real-time neuromorphic computing with a TENG matrix for the first time. Typical properties of sensory memory are successfully demonstrated, such as, excitatory post-synaptic current and paired pulse facilitation, followed with hierarchical memorial processes from sensory memory to short-term memory and to long-term memory. Finally, 28 × 28 matrix triboelectric sensory receptors are fabricated to connect the real-time handwritten image with large-scale data processing. This work proposed a remarkable self-powered artificial afferent nerve to realize rapid and high-sensitivity response, which would show a widespread potential in low consumption artificial neuromorphic interface such as human-robot interaction, edge computing and neurorobotics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
沐阳完成签到 ,获得积分10
1秒前
王佳俊完成签到,获得积分10
4秒前
8秒前
9秒前
壹玖一陆完成签到,获得积分20
11秒前
11秒前
13秒前
豆都发布了新的文献求助10
13秒前
耳东陈完成签到 ,获得积分10
14秒前
壹玖一陆发布了新的文献求助10
15秒前
科研通AI6应助壹玖一陆采纳,获得10
20秒前
22秒前
我是老大应助wuzihao采纳,获得10
22秒前
max完成签到,获得积分10
22秒前
24秒前
29秒前
CodeCraft应助传统的书包采纳,获得30
32秒前
Evaporate发布了新的文献求助10
32秒前
32秒前
37秒前
小王完成签到 ,获得积分10
38秒前
浮游应助科研通管家采纳,获得10
41秒前
酷波er应助科研通管家采纳,获得10
42秒前
ding应助科研通管家采纳,获得10
42秒前
浮浮世世应助科研通管家采纳,获得30
42秒前
浮游应助科研通管家采纳,获得10
42秒前
情怀应助科研通管家采纳,获得10
42秒前
tdtk发布了新的文献求助10
42秒前
张步完成签到 ,获得积分10
43秒前
44秒前
47秒前
老老实实好好活着完成签到,获得积分10
47秒前
51秒前
zozox完成签到 ,获得积分10
54秒前
李健的小迷弟应助nanne采纳,获得30
54秒前
55秒前
gzwhh发布了新的文献求助30
1分钟前
酷波er应助tdtk采纳,获得10
1分钟前
1分钟前
JamesPei应助zorro3574采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5493801
求助须知:如何正确求助?哪些是违规求助? 4591808
关于积分的说明 14434688
捐赠科研通 4524200
什么是DOI,文献DOI怎么找? 2478731
邀请新用户注册赠送积分活动 1463717
关于科研通互助平台的介绍 1436490