Unlocking the spatial heterogeneous relationship between Per Capita GDP and nearby air quality using bivariate local indicator of spatial association

二元分析 人均 地理 国内生产总值 质量(理念) 联想(心理学) 环境科学 计量经济学 空间关系 业务 农业经济学 经济增长 经济 环境卫生 计算机科学 统计 医学 人口 认识论 哲学 人工智能 数学
作者
Weize Song,Can Wang,Wei‐Qiang Chen,Xiaoling Zhang,Haoran Li,Jin Li
出处
期刊:Resources Conservation and Recycling [Elsevier]
卷期号:160: 104880-104880 被引量:55
标识
DOI:10.1016/j.resconrec.2020.104880
摘要

Air quality has proven to be closely related to economic levels. China is a vast country with substantial economic level and air quality disparities among cities. Consequently, policy-makers face challenges in implementing regional collaborative governances. Here, we use the bivariate local indicator of spatial association (LISA) statistic to reveal the spatial heterogeneous relationship between local per capita GDP and nearby air quality, especially fine particulate matter (PM2.5). This study was conducted in 256 prefecture-level cities for the year 2015. The results show that 20, 28, 30, 28, and 187 cities were identified as the HpcgdpHpm2.5, LpcgdpLpm2.5, LpcgdpHpm2.5, HpcgdpLpm2.5, and ‘not significant’ typologies, respectively. Furthermore, LpgdpHpm2.5 cities are mainly located in the northern China, whereas HpcgdpLpm2.5 cities are mainly distributed in the Guangdong provinces. The underlying causes may be attributed to the differences in economic structures. We found that LpgdpHpm2.5 cities has approximate 60% more coal-fired power plants, 2.3 times iron and steel plants than those of HpgdpLpm2.5 cities, whereas the latter attracted 5.1 times as much investment capitals from foreign, Hong Kong, Macao and Taiwan as the former. This indicates the industries of HpgdpLpm2.5 cities have higher technology levels and lower emission intensities. Thus, policy makers should accelerate economic transformation, especially in Shandong, Hebei, and Henan provinces. Overall, our findings suggest that not only bivariate LISA statistic is a simple and useful approach to distinguish city typologies, but also provide the evidences for those cities responsible for air quality of adjacent cities.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhj完成签到,获得积分10
1秒前
1秒前
yu完成签到 ,获得积分10
1秒前
1122完成签到 ,获得积分10
2秒前
shanekhost完成签到 ,获得积分10
2秒前
舒心的飞双完成签到,获得积分10
2秒前
st发布了新的文献求助10
2秒前
纷纭完成签到,获得积分10
3秒前
kaka发布了新的文献求助10
3秒前
徐涵完成签到 ,获得积分10
3秒前
Monicadd完成签到 ,获得积分10
4秒前
kk发布了新的文献求助10
5秒前
深情安青应助瞿人雄采纳,获得10
6秒前
树叶有专攻完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
无情的裘发布了新的文献求助10
7秒前
summitekey完成签到 ,获得积分10
7秒前
7秒前
Echo完成签到,获得积分0
8秒前
小蘑菇应助繁荣的念双采纳,获得10
9秒前
wushuping完成签到,获得积分10
11秒前
LC完成签到 ,获得积分10
14秒前
14秒前
14秒前
xuandandan完成签到,获得积分20
15秒前
15秒前
香蕉觅云应助jailbreakhades采纳,获得10
16秒前
kaka完成签到,获得积分10
17秒前
深情安青应助Pie采纳,获得10
17秒前
852应助蓝莓采纳,获得10
18秒前
20秒前
思源应助一个小胖子采纳,获得10
20秒前
20秒前
大舟Austin完成签到 ,获得积分10
21秒前
lynn发布了新的文献求助10
21秒前
22秒前
牛的滑发布了新的文献求助10
22秒前
JIA完成签到,获得积分10
22秒前
kk完成签到,获得积分20
24秒前
1q完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536873
求助须知:如何正确求助?哪些是违规求助? 4624540
关于积分的说明 14592255
捐赠科研通 4564957
什么是DOI,文献DOI怎么找? 2502101
邀请新用户注册赠送积分活动 1480843
关于科研通互助平台的介绍 1452073