亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Relation-Aware Facial Expression Recognition

计算机科学 判别式 表达式(计算机科学) 人工智能 面部表情 幻觉 关系(数据库) 三维人脸识别 面部表情识别 模式识别(心理学) 光学(聚焦) 面部识别系统 特征提取 面子(社会学概念) 卷积神经网络 语音识别 计算机视觉 人工神经网络 人脸检测 数据挖掘 社会科学 物理 光学 社会学 程序设计语言
作者
Yifan Xia,Hui Yu,Xiao Wang,Muwei Jian,Fei-Yue Wang
出处
期刊:IEEE Transactions on Cognitive and Developmental Systems [Institute of Electrical and Electronics Engineers]
卷期号:14 (3): 1143-1154 被引量:1
标识
DOI:10.1109/tcds.2021.3100131
摘要

Research on facial expression recognition has been moving from the constrained lab scenarios to the in-the-wild situations and has made progress in recent years. However, it is still very challenging to deal with facial expression in the wild due to large poses and occlusion as well as illumination and intensity variations. Generally, existing methods mainly take the whole face as a uniform source of features for facial expression analysis. Actually, physiology and psychology research shows that some crucial regions, such as the eye and mouth, reflect the differences of different facial expressions, which have close relationships with emotion expression. Inspired by this observation, a novel relation-aware facial expression recognition method called relation convolutional neural network (ReCNN) is proposed in this article, which can adaptively capture the relationship between crucial regions and facial expressions leading to the focus on the most discriminative regions for recognition. We have evaluated the proposed ReCNN on two large in-the-wild databases: 1) AffectNet and 2) RAF-DB. Extensive experiments on these databases show that our method has superior recognition accuracy compared with state-of-the-art methods and the relationship between crucial regions and facial expressions is beneficial to improve the performance of facial expression recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Marshall完成签到 ,获得积分10
刚刚
5秒前
10秒前
汉堡包应助十二平均律采纳,获得10
11秒前
24秒前
小布发布了新的文献求助10
30秒前
李某完成签到 ,获得积分10
31秒前
大个应助小布采纳,获得10
35秒前
所谓伊人发布了新的文献求助10
38秒前
大模型应助能干的小虾米采纳,获得10
41秒前
传奇3应助Nat采纳,获得10
46秒前
CodeCraft应助简单的熊猫采纳,获得10
49秒前
菜菜完成签到 ,获得积分10
50秒前
54秒前
Nat发布了新的文献求助10
58秒前
梁33完成签到,获得积分10
1分钟前
1分钟前
Serendiply发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
Frank发布了新的文献求助10
1分钟前
1分钟前
1分钟前
个性归尘应助科研通管家采纳,获得10
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
丘比特应助科研通管家采纳,获得10
1分钟前
星辰大海应助科研通管家采纳,获得10
1分钟前
HY发布了新的文献求助10
1分钟前
英勇雅琴完成签到 ,获得积分10
1分钟前
晨晨发布了新的文献求助10
1分钟前
玄音完成签到,获得积分10
1分钟前
2分钟前
晨晨完成签到,获得积分10
2分钟前
ch发布了新的文献求助10
2分钟前
ohenry完成签到,获得积分10
2分钟前
能干的小虾米完成签到 ,获得积分20
2分钟前
能干的小虾米关注了科研通微信公众号
2分钟前
wenwen发布了新的文献求助80
2分钟前
谦让的西装完成签到 ,获得积分10
2分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems 200
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Fast method for calculating cutoff frequencies in single-mode fibres with arbitrary index profiles 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833724
求助须知:如何正确求助?哪些是违规求助? 3376149
关于积分的说明 10492276
捐赠科研通 3095739
什么是DOI,文献DOI怎么找? 1704694
邀请新用户注册赠送积分活动 820063
科研通“疑难数据库(出版商)”最低求助积分说明 771792