亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Quantifying swimming activities using accelerometer signal processing and machine learning: A pilot study

加速度计 支持向量机 人工智能 计算机科学 机器学习 操作系统
作者
Xiong Qin,Yadong Song,Zhang Guanqun,Fan Guo,Weimo Zhu
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:71: 103136-103136 被引量:2
标识
DOI:10.1016/j.bspc.2021.103136
摘要

• Support vector machine (SVM) provides accuracy of classification over 99% • Following SVM, time counting in each style has accuracy over 99% • Stroke count could be accomplished with 93% accuracy. • The three functions above could be done with only one accelerometer. Aerobic exercises on land could be quantified and tracked objectively, but swimming style recognition has remained unexplored. Taking the advantages of signal processing and machine learning on acceleration signals, the purpose of this study was, by analyzing swimming accelerometer data, to explore a set of algorithm in tracking swimming activities, including recognizing swimming styles, counting time and counting strokes in each style. A total of 17 participants (9 females) from the swimming team of the Southeast University of China was recruited. They performed breaststroke, front crawl, backstroke and butterfly, four 50-meter-lap each, with an ActiGraph GT9X inertia measurement unit on wrist of their preferred side. Overall, 78.7 ± 14.6, 148.5 ± 21.7, 151.2 ± 14.4, 98 ± 16.3 strokes were performed and evaluated on breaststroke, front crawl, backstroke and butterfly, respectively. In classification, three classifiers were examined and the result showed that support vector machine (SVM) provided the best accuracy of classification (over 99%). In time counting, the accuracy was over 99% and in stroke counting, the overall single-lap accuracy rate was 93.3%. In conclusion, with a combination of an objective measure and machine-learning algorithm, tracking swimming activities, including swimming style classification, counting swimming time and strokes, by a accelerometer becomes possible.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GingerF应助淡然的妙芙采纳,获得50
5秒前
6秒前
12秒前
卑微学术人完成签到 ,获得积分10
26秒前
57秒前
Viiigo发布了新的文献求助10
1分钟前
棠七应助倪妮采纳,获得10
1分钟前
苏梗完成签到 ,获得积分10
1分钟前
认真的幻姬完成签到,获得积分10
1分钟前
1分钟前
movoandy发布了新的文献求助30
1分钟前
1分钟前
科研通AI2S应助倪妮采纳,获得10
2分钟前
科研通AI2S应助倪妮采纳,获得10
2分钟前
赘婿应助倪妮采纳,获得10
2分钟前
wanci应助倪妮采纳,获得10
2分钟前
无花果应助Dralee采纳,获得10
2分钟前
2分钟前
2分钟前
2分钟前
路卡利欧完成签到 ,获得积分10
2分钟前
光亮的垣完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
丘比特应助movoandy采纳,获得10
3分钟前
3分钟前
automan发布了新的文献求助10
3分钟前
roe完成签到 ,获得积分20
3分钟前
3分钟前
automan完成签到,获得积分10
3分钟前
胖小羊完成签到 ,获得积分10
3分钟前
3分钟前
忧郁小鸽子完成签到,获得积分10
3分钟前
小刘完成签到,获得积分10
3分钟前
3分钟前
玛卡巴卡爱吃饭完成签到 ,获得积分10
3分钟前
冷静新烟完成签到,获得积分20
3分钟前
冷静新烟发布了新的文献求助10
4分钟前
lalala完成签到,获得积分10
4分钟前
Kevin完成签到,获得积分10
4分钟前
高分求助中
Comprehensive Toxicology Fourth Edition 2026 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5104996
求助须知:如何正确求助?哪些是违规求助? 4315064
关于积分的说明 13443981
捐赠科研通 4143505
什么是DOI,文献DOI怎么找? 2270465
邀请新用户注册赠送积分活动 1272960
关于科研通互助平台的介绍 1210012