A dynamic hybrid trust network-based dual-path feedback consensus model for multi-attribute group decision-making in intuitionistic fuzzy environment

计算机科学 对偶(语法数字) 路径(计算) 偏爱 群体决策 数学优化 模糊逻辑 过程(计算) 运筹学 人工智能 数据挖掘 数学 社会心理学 计算机网络 艺术 统计 文学类 心理学 操作系统
作者
Bingsheng Liu,Shengxue Jiao,Yinghua Shen,Yuan Chen,Guobin Wu,Si Chen
出处
期刊:Information Fusion [Elsevier BV]
卷期号:80: 266-281 被引量:72
标识
DOI:10.1016/j.inffus.2021.09.020
摘要

This paper proposes a dual-path feedback consensus model based on dynamic hybrid trust relationships to solve multi-attribute group decision-making problems in intuitionistic fuzzy environment. This model comprises two main parts: (a) the construction of a dynamic hybrid trust network among decision makers (DMs) and (b) the formation of a dual-path feedback mechanism to improve the group consensus. In the first part, a hybrid trust network is constructed by combining DMs’ prior knowledge of each other and the preference similarities between them. Then, the hybrid trust network is dynamically updated iteratively to reflect the changes in the trust relationships in the process of joint decision-making. In the second part, DMs with low consensus degrees are identified and provided with either a preference or weight adjustment path to improve the group consensus. The preference adjustment path is activated for DMs who agree to modify their preferences, and a nonlinear programming model is proposed to help DMs improve consensus degrees while minimizing adjustment cost. The weight adjustment path is activated for DMs who stick to their own opinions and refuse to make changes, and their weights is adjusted accordingly. An illustrative example along with the related sensitivity analysis and comparative study are used to verify the effectiveness of the proposed model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
小马甲应助guositing采纳,获得10
刚刚
上官若男应助artx001采纳,获得10
2秒前
lwz577发布了新的文献求助10
2秒前
2秒前
qiong发布了新的文献求助10
3秒前
李爱国应助1234采纳,获得30
4秒前
toughhh发布了新的文献求助10
4秒前
无法挽留发布了新的文献求助10
4秒前
jdjd发布了新的文献求助10
5秒前
啦啦啦啦完成签到,获得积分10
6秒前
丑鸭子完成签到,获得积分20
6秒前
量子星尘发布了新的文献求助30
8秒前
gk完成签到,获得积分10
8秒前
Sid应助奈何采纳,获得90
8秒前
文艺点点完成签到,获得积分10
9秒前
深情的从灵完成签到,获得积分10
10秒前
11秒前
hkf发布了新的文献求助10
11秒前
11秒前
JamesPei应助驰驰采纳,获得10
12秒前
12秒前
汉堡包应助San万采纳,获得10
13秒前
Ldx发布了新的文献求助10
13秒前
小马甲应助ceci采纳,获得10
14秒前
14秒前
嘻嘻应助幽默向真采纳,获得10
15秒前
16秒前
16秒前
16秒前
16秒前
16秒前
16秒前
kkuang发布了新的文献求助10
17秒前
rain发布了新的文献求助10
17秒前
南充市第一中学完成签到,获得积分10
18秒前
19秒前
ttSeven发布了新的文献求助40
19秒前
21秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
Continuum Thermodynamics and Material Modelling 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 800
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3871122
求助须知:如何正确求助?哪些是违规求助? 3413294
关于积分的说明 10683711
捐赠科研通 3137724
什么是DOI,文献DOI怎么找? 1731163
邀请新用户注册赠送积分活动 834633
科研通“疑难数据库(出版商)”最低求助积分说明 781250