A new global toolpath linking algorithm for different subregions with Travelling Saleman problem solver

机械加工 解算器 过程(计算) 算法 旅行商问题 遗传算法 计算机科学 贪婪算法 粒子群优化 数学优化 数学 工程类 机械工程 操作系统
作者
Qirui Hu,Zhiwei Lin,Jianzhong Fu
出处
期刊:International Journal of Computer Integrated Manufacturing [Taylor & Francis]
卷期号:35 (6): 633-644 被引量:3
标识
DOI:10.1080/0951192x.2021.1992667
摘要

In CNC toolpath generation process, the operation of linking toolpaths from different sub-machining regions is common and inevitable. Apparently, the jumping toolpath between machining regions is invalid. They do not contribute to the machining process but only waste valuable manufacturing time; therefore, these toolpaths should be as short as possible. Many methods have been used to link toolpaths, such as the Genetic Algorithm (GA), the Particle Swarm Optimization (PSO) or even the greedy algorithm. However, GA and PSO require multiple iterations to find the global optimum, while greedy algorithm selects the current shortest connection each time without considering the global optimum. To reduce the total length of non-productive toolpaths and save computing time, in this paper, a new method is proposed by modeling the toolpath linking problem purely as a traveling salesman problem (TSP). The initial toolpaths in different subregions are generated in ordinary ways. Each toolpath of a subregion has two endpoints, which can be simplified as a line segment. In this way, the toolpath linking problem can be considered as a segment TSP: finding the shortest tour through all the segments. In this paper, the efficient TSP solver using Lin-Kernighan–Helsgaun (LKH) algorithm is employed and modified for the segment TSP application. The distance function between 'cities' is redefined to adapt the segments TSP. Finally, the feasibility of the proposed method is verified with several examples. The comparison with the result of traditional greedy algorithm proves the superiority of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
3秒前
hahaha完成签到,获得积分20
3秒前
jiao完成签到,获得积分10
3秒前
Jasper应助Issac01采纳,获得10
4秒前
大模型应助苹果采纳,获得10
4秒前
FnDs完成签到,获得积分10
4秒前
bono完成签到 ,获得积分10
4秒前
hahaha发布了新的文献求助10
6秒前
6秒前
9秒前
9秒前
11秒前
13秒前
14秒前
15秒前
苏州小北发布了新的文献求助10
16秒前
17秒前
18秒前
wlq发布了新的文献求助10
18秒前
Issac01发布了新的文献求助10
18秒前
xiaosi完成签到 ,获得积分10
19秒前
666发布了新的文献求助10
20秒前
鹏1989发布了新的文献求助10
21秒前
历史真相发布了新的文献求助10
21秒前
24秒前
xingxing应助七月采纳,获得10
24秒前
25秒前
迷路秋荷完成签到 ,获得积分10
25秒前
dd完成签到 ,获得积分10
26秒前
CipherSage应助wlq采纳,获得10
28秒前
帅气的襄发布了新的文献求助10
29秒前
大个应助美丽的冰蓝采纳,获得10
30秒前
张芙瑶发布了新的文献求助10
34秒前
37秒前
月月发布了新的文献求助10
37秒前
39秒前
ldk完成签到,获得积分10
39秒前
39秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 700
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
SPSS for Windows Step by Step: A Simple Study Guide and Reference, 17.0 Update (10th Edition) 500
PBSM: Predictive Bi-Preference Stable Matching in Spatial Crowdsourcing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4126291
求助须知:如何正确求助?哪些是违规求助? 3663886
关于积分的说明 11593318
捐赠科研通 3363474
什么是DOI,文献DOI怎么找? 1848222
邀请新用户注册赠送积分活动 912232
科研通“疑难数据库(出版商)”最低求助积分说明 827947