Graph Signal Processing, Graph Neural Network and Graph Learning on Biological Data: A Systematic Review

生物网络 计算机科学 生物学数据 理论计算机科学 图形 推论 人工智能 生物信息学 生物
作者
Rui Li,Xin Yuan,Mohsen Radfar,Peter Marendy,Wei Ni,Terence J. O’Brien,Pablo M. Casillas‐Espinosa
出处
期刊:IEEE Reviews in Biomedical Engineering [Institute of Electrical and Electronics Engineers]
卷期号:16: 109-135 被引量:65
标识
DOI:10.1109/rbme.2021.3122522
摘要

Graph networks can model data observed across different levels of biological systems that span from population graphs (with patients as network nodes) to molecular graphs that involve omics data. Graph-based approaches have shed light on decoding biological processes modulated by complex interactions. This paper systematically reviews graph-based analysis methods of Graph Signal Processing (GSP), Graph Neural Networks (GNNs) and graph topology inference, and their applications to biological data. This work focuses on the algorithms of graph-based approaches and the constructions of graph-based frameworks that are adapted to a broad range of biological data. We cover the Graph Fourier Transform and the graph filter developed in GSP, which provides tools to investigate biological signals in the graph domain that can potentially benefit from the underlying graph structures. We also review the node, graph, and interaction oriented applications of GNNs with inductive and transductive learning manners for various biological targets. As a key component of graph analysis, we provide a review of graph topology inference methods that incorporate assumptions for specific biological objectives. Finally, we discuss the biological application of graph analysis methods within this exhaustive literature collection, potentially providing insights for future research in biological sciences.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
居单在此发布了新的文献求助50
1秒前
ding应助良辰采纳,获得10
2秒前
liyi发布了新的文献求助10
2秒前
来自DF的小白完成签到,获得积分10
3秒前
CipherSage应助坚强的寒风采纳,获得10
3秒前
Orange应助狂飙的小蜗牛采纳,获得10
4秒前
4秒前
8秒前
9秒前
9秒前
9秒前
10秒前
11秒前
12秒前
艺术家发布了新的文献求助10
12秒前
liyi完成签到,获得积分10
13秒前
achaia发布了新的文献求助10
14秒前
14秒前
萧布发布了新的文献求助10
16秒前
16秒前
16秒前
咕噜完成签到 ,获得积分10
17秒前
逝水完成签到 ,获得积分10
19秒前
LiaoKaijian发布了新的文献求助10
19秒前
上官若男应助kuny采纳,获得10
23秒前
缓慢又蓝发布了新的文献求助20
23秒前
居单在此完成签到,获得积分10
26秒前
桃花岛岛主完成签到,获得积分10
28秒前
29秒前
29秒前
31秒前
31秒前
32秒前
李颖雪发布了新的文献求助10
34秒前
34秒前
35秒前
35秒前
35秒前
35秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782187
求助须知:如何正确求助?哪些是违规求助? 3327590
关于积分的说明 10232533
捐赠科研通 3042546
什么是DOI,文献DOI怎么找? 1670040
邀请新用户注册赠送积分活动 799600
科研通“疑难数据库(出版商)”最低求助积分说明 758844