Elemental Sulfur Nanoparticles Enhance Disease Resistance in Tomatoes

病菌 开枪 植物抗病性 生物 单核苷酸多态性 园艺 作物 农学 微生物学 生物化学 基因 基因型
作者
Xuesong Cao,Chuanxi Wang,Xing Luo,Le Yue,Jason C. White,Wade H. Elmer,Om Parkash Dhankher,Zhenyu Wang,Baoshan Xing
出处
期刊:ACS Nano [American Chemical Society]
卷期号:15 (7): 11817-11827 被引量:93
标识
DOI:10.1021/acsnano.1c02917
摘要

In agriculture, loss of crop yield to pathogen damage seriously threatens efforts to achieve global food security. In the present work, "organic" elemental sulfur nanoparticles (SNPs) were investigated for management of the fungal pathogen Fusarium oxysporum f. sp. lycopersici on tomatoes. Foliar application and seed treatment with SNPs (30–100 mg/L, 30 and 100 nm) suppressed pathogen infection in tomatoes, in a concentration- and size-dependent fashion in a greenhouse experiment. Foliar application with 1 mg/plant of 30 nm SNPs (30-SNPs) exhibited the best performance for disease suppression, significantly decreasing disease incidence by 47.6% and increasing tomato shoot biomass by 55.6% after 10 weeks application. Importantly, the disease control efficacy with 30-SNPs was 1.43-fold greater than the commercially available fungicide hymexazol. Mechanistically, 30-SNPs activated the salicylic acid-dependent systemic acquired resistance pathway in tomato shoots and roots, with subsequent upregulation of the expression of pathogenesis-related and antioxidase-related genes (upregulated by 11–352%) and enhancement of the activity and content of disease-related biomolecules (enhanced by 5–49%). In addition, transmission electron microscopy imaging shows that SNPs were distributed in the tomato stem and directly inactivated in vivo pathogens. The oxidative stress in tomato shoots and roots, the root plasma membrane damage, and the growth of the pathogen in stem were all significantly decreased by SNPs. The findings highlight the significant potential of SNPs as an eco-friendly and sustainable crop protection strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淡淡的发卡完成签到,获得积分10
1秒前
暗黑同学完成签到,获得积分10
2秒前
英俊的铭应助萝卜脚踝采纳,获得10
2秒前
Lilith发布了新的文献求助10
4秒前
月儿完成签到 ,获得积分10
4秒前
科研通AI5应助nancy采纳,获得10
5秒前
科研通AI5应助开朗以亦采纳,获得10
9秒前
打打应助小恐龙飞飞采纳,获得30
11秒前
二由完成签到 ,获得积分0
12秒前
kjlee完成签到,获得积分10
12秒前
Akim应助缓慢手机采纳,获得30
13秒前
16秒前
18秒前
19秒前
19秒前
科研通AI5应助复杂念梦采纳,获得10
20秒前
诸忆雪发布了新的文献求助10
21秒前
maggie完成签到,获得积分10
21秒前
dddd发布了新的文献求助10
23秒前
萝卜脚踝发布了新的文献求助10
23秒前
深情安青应助嘀咕嘀咕采纳,获得10
23秒前
xxx完成签到 ,获得积分10
24秒前
27秒前
yuanll完成签到,获得积分10
27秒前
dddd完成签到,获得积分10
29秒前
缓慢手机发布了新的文献求助30
30秒前
郭星星完成签到,获得积分10
30秒前
zhenzhen完成签到,获得积分10
31秒前
飞鹏不会飞完成签到,获得积分10
32秒前
maggie发布了新的文献求助10
34秒前
CodeCraft应助qwjs采纳,获得10
35秒前
37秒前
郭星星发布了新的文献求助10
37秒前
羲月完成签到,获得积分10
38秒前
李健应助大闪电采纳,获得10
40秒前
刘小明完成签到,获得积分10
41秒前
馅饼完成签到,获得积分10
41秒前
duoduo完成签到,获得积分10
42秒前
Nancy发布了新的文献求助20
43秒前
Xenia完成签到 ,获得积分10
44秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779404
求助须知:如何正确求助?哪些是违规求助? 3324954
关于积分的说明 10220585
捐赠科研通 3040099
什么是DOI,文献DOI怎么找? 1668560
邀请新用户注册赠送积分活动 798721
科研通“疑难数据库(出版商)”最低求助积分说明 758522