WePerson: Learning a Generalized Re-identification Model from All-weather Virtual Data

计算机科学 人工智能 机器学习 鉴定(生物学) 数据建模 深度学习 人工神经网络
作者
He Li,Mang Ye,Bo Du
出处
期刊:ACM Multimedia 卷期号:: 3115-3123 被引量:1
标识
DOI:10.1145/3474085.3475455
摘要

The aim of person re-identification (Re-ID) is retrieving a person of interest across multiple non-overlapping cameras. Re-ID has gained significantly increased advancement in recent years. However, real data annotation is costly and model generalization ability is hindered by the lack of large-scale and diverse data. To address this problem, we propose a Weather Person pipeline that can generate a synthesized Re-ID dataset with different weather, scenes, and natural lighting conditions automatically. The pipeline is built on the top of a game engine which contains a digital city, weather and lighting simulation system, and various character models with manifold dressing. To train a generalizable Re-ID model from the large-scale virtual WePerson dataset, we design an adaptive sample selection strategy to close the domain gap and avoid redundancy. We also design an informative sampling method for a mini-batch sampler to accelerate the learning process. In addition, an efficient training method is introduced by adopting instance normalization to capture identity invariant components from various appearances. We evaluate our pipeline using direct transfer on 3 widely-used real-world benchmarks, achieving competitive performance without any real-world image training. This dataset starts the attempt to evaluate diverse environmental factors in a controllable virtual engine, which provides important guidance for future generalizable Re-ID model design. Notably, we improve the current state-of-the-art accuracy from 38.5% to 46.4% on the challenging MSMT17 dataset. Dataset and code are available at https://github.com/lihe404/WePerson https://github.com/lihe404/WePerson.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
lin应助111采纳,获得50
5秒前
彼方发布了新的文献求助10
6秒前
bkagyin应助zoe采纳,获得10
6秒前
科研谢啦完成签到,获得积分10
7秒前
靓丽傲玉发布了新的文献求助10
8秒前
8秒前
中旬日发布了新的文献求助10
9秒前
10秒前
Daily完成签到,获得积分10
10秒前
11秒前
13秒前
actor2006完成签到,获得积分10
14秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
CodeCraft应助科研通管家采纳,获得10
15秒前
无花果应助科研通管家采纳,获得10
15秒前
Hello应助科研通管家采纳,获得10
15秒前
今后应助科研通管家采纳,获得10
15秒前
15秒前
领导范儿应助科研通管家采纳,获得10
15秒前
15秒前
17秒前
烟花应助七月采纳,获得10
17秒前
靓丽傲玉完成签到,获得积分10
18秒前
科研通AI5应助王道远采纳,获得100
18秒前
19秒前
Liandong发布了新的文献求助10
19秒前
Yang发布了新的文献求助10
20秒前
星辰大海应助彼方采纳,获得10
20秒前
高大书易完成签到 ,获得积分10
23秒前
24秒前
大模型应助机灵的南蕾采纳,获得10
25秒前
打打应助oncoma采纳,获得10
28秒前
讨厌下雨发布了新的文献求助10
29秒前
29秒前
29秒前
陈无敌完成签到 ,获得积分10
29秒前
30秒前
32秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793299
求助须知:如何正确求助?哪些是违规求助? 3338015
关于积分的说明 10288400
捐赠科研通 3054639
什么是DOI,文献DOI怎么找? 1676091
邀请新用户注册赠送积分活动 804095
科研通“疑难数据库(出版商)”最低求助积分说明 761752