Detection and Classification of Bronchiectasis Through Convolutional Neural Networks

支气管扩张 医学 放射科 人工智能 内科学 计算机科学
作者
Lorenzo Aliboni,Francesca Pennati,Alice Gelmini,Alessandra Colombo,Andrea Ciuni,Gianluca Milanese,Nicola Sverzellati,Sandro Magnani,Valentina Vespro,Francesco Blasi,Andréa Aliverti,Stefano Aliberti
出处
期刊:Journal of Thoracic Imaging [Lippincott Williams & Wilkins]
卷期号:37 (2): 100-108 被引量:12
标识
DOI:10.1097/rti.0000000000000588
摘要

Bronchiectasis is a chronic disease characterized by an irreversible dilatation of bronchi leading to chronic infection, airway inflammation, and progressive lung damage. Three specific patterns of bronchiectasis are distinguished in clinical practice: cylindrical, varicose, and cystic. The predominance and the extension of the type of bronchiectasis provide important clinical information. However, characterization is often challenging and is subject to high interobserver variability. The aim of this study is to provide an automatic tool for the detection and classification of bronchiectasis through convolutional neural networks.Two distinct approaches were adopted: (i) direct network performing a multilabel classification of 32×32 regions of interest (ROIs) into 4 classes: healthy, cylindrical, cystic, and varicose and (ii) a 2-network serial approach, where the first network performed a binary classification between normal tissue and bronchiectasis and the second one classified the ROIs containing abnormal bronchi into one of the 3 bronchiectasis typologies. Performances of the networks were compared with other architectures presented in the literature.Computed tomography from healthy individuals (n=9, age=47±6, FEV1%pred=109±17, FVC%pred=116±17) and bronchiectasis patients (n=21, age=59±15, FEV1%pred=74±25, FVC%pred=91±22) were collected. A total of 19,059 manually selected ROIs were used for training and testing. The serial approach provided the best results with an accuracy and F1 score average of 0.84, respectively. Slightly lower performances were observed for the direct network (accuracy=0.81 and F1 score average=0.82). On the test set, cylindrical bronchiectasis was the subtype classified with highest accuracy, while most of the misclassifications were related to the varicose pattern, mainly to the cylindrical class.The developed networks accurately detect and classify bronchiectasis disease, allowing to collect quantitative information regarding the radiologic severity and the topographical distribution of bronchiectasis subtype.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助无心的寄柔采纳,获得10
1秒前
shuiyu发布了新的文献求助10
1秒前
3秒前
Noel应助萨尔莫斯采纳,获得10
3秒前
乔心发布了新的文献求助10
4秒前
4秒前
6秒前
桐桐应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得30
7秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
阿浮完成签到,获得积分10
8秒前
hahaha完成签到,获得积分10
8秒前
9秒前
卓Celina完成签到,获得积分10
9秒前
驿寄梅花发布了新的文献求助10
10秒前
阿浮发布了新的文献求助10
11秒前
天天快乐应助CYY采纳,获得10
14秒前
念辞发布了新的文献求助10
14秒前
HEIKU应助Misea采纳,获得10
16秒前
任性雪糕完成签到 ,获得积分10
16秒前
852应助萨尔莫斯采纳,获得10
17秒前
共享精神应助狡猾肥鲶鱼采纳,获得30
17秒前
情怀应助净净子采纳,获得10
19秒前
魏你大爷完成签到 ,获得积分10
20秒前
丁丁完成签到,获得积分10
20秒前
在水一方应助平淡紫夏采纳,获得10
20秒前
我是老大应助驿寄梅花采纳,获得10
22秒前
缓慢的灵枫完成签到,获得积分10
26秒前
29秒前
驿寄梅花完成签到,获得积分10
34秒前
35秒前
36秒前
36秒前
柠檬精翠翠完成签到 ,获得积分10
39秒前
段段发布了新的文献求助10
41秒前
yuaaaann发布了新的文献求助10
42秒前
CYY发布了新的文献求助10
42秒前
43秒前
科研通AI5应助张继妖采纳,获得10
47秒前
yue发布了新的文献求助10
47秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Encyclopedia of Geology (2nd Edition) 2000
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780337
求助须知:如何正确求助?哪些是违规求助? 3325661
关于积分的说明 10223791
捐赠科研通 3040806
什么是DOI,文献DOI怎么找? 1669006
邀请新用户注册赠送积分活动 798963
科研通“疑难数据库(出版商)”最低求助积分说明 758648