Food and agro-product quality evaluation based on spectroscopy and deep learning: A review

人工智能 质量(理念) 产品(数学) 计算机科学 光谱学 农业工程 环境科学 数学 工程类 物理 哲学 认识论 几何学 量子力学
作者
Xiaolei Zhang,Jie Yang,Tao Lin,Yibin Ying
出处
期刊:Trends in Food Science and Technology [Elsevier BV]
卷期号:112: 431-441 被引量:164
标识
DOI:10.1016/j.tifs.2021.04.008
摘要

Rapid and non-destructive infrared spectroscopy has been applied to both internal and external quality evaluations of food and agro-products. Various linear and nonlinear chemometric methods have been developed for spectral analysis. The generalizability of previous chemometric methods is hindered by changing noise under various detection conditions and biological variabilities. Recently, deep learning approaches have been developed for spectral noise reduction, feature extraction, and calibration regression modeling. This review discusses the current challenges of conventional chemometric methods and the emerging deep learning approach for spectral analysis. The current state-of-the-art techniques, including unsupervised feature extraction and noise reduction models and supervised multivariate regression approaches, have been addressed in this review. The research on exploring the learning mechanism of the ‘black box’ deep learning model is also discussed. This review focuses on the application of deep learning approaches on quality evaluation of food and agro-products, lessons from current studies, and future perspectives. The deep learning approach combined with spectroscopic sensing techniques has shown great potential for quality evaluation of food and agro-products. Current advances in deep learning-based qualitative analysis include variety identification, geographical origin detection, adulteration recognition, and bruise detection, whereas quantitative analysis includes multiple component content prediction for fruits, grains, and crops. The main advantage of deep learning approach is the decreasing the dependence on human domain knowledge by end-to-end analysis and the improved precision and generalizability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
林木完成签到 ,获得积分10
刚刚
传奇3应助天才大肥猫采纳,获得10
刚刚
刚刚
3秒前
3秒前
3秒前
所所应助未明的感觉采纳,获得10
3秒前
5秒前
LiXingchen发布了新的文献求助10
5秒前
6秒前
英姑应助和谐的敏采纳,获得10
8秒前
佳jia发布了新的文献求助10
8秒前
杨杰发布了新的文献求助10
9秒前
10秒前
碧蓝青梦发布了新的文献求助10
10秒前
扬帆完成签到,获得积分10
11秒前
tj完成签到,获得积分10
12秒前
vicky完成签到 ,获得积分10
12秒前
12秒前
MJ发布了新的文献求助10
13秒前
bai完成签到,获得积分10
13秒前
14秒前
英勇的笑南完成签到,获得积分10
14秒前
15秒前
win应助TOM采纳,获得10
15秒前
15秒前
外星汽水发布了新的文献求助10
16秒前
Waeiyengyul发布了新的文献求助30
16秒前
远航发布了新的文献求助10
17秒前
orixero应助碧蓝青梦采纳,获得10
17秒前
果称发布了新的文献求助10
17秒前
ai万完成签到,获得积分10
17秒前
17秒前
luyuran完成签到,获得积分10
17秒前
18秒前
tt发布了新的文献求助10
19秒前
20秒前
思源应助愉快的花卷采纳,获得10
20秒前
哞哞发布了新的文献求助10
20秒前
ddx发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4739511
求助须知:如何正确求助?哪些是违规求助? 4090781
关于积分的说明 12654315
捐赠科研通 3800254
什么是DOI,文献DOI怎么找? 2098532
邀请新用户注册赠送积分活动 1123945
科研通“疑难数据库(出版商)”最低求助积分说明 999214