Laser-driven particle acceleration on a chip: status and applications

物理 激光器 光学 纳米光子学 粒子加速器 加速度 质点加速度 电子 光子学 粒子束 波导管 梁(结构) 光电子学 经典力学 量子力学
作者
Peter Hommelhoff,R. J. England,Robert L. Byer
标识
DOI:10.1117/12.2596508
摘要

Dielectric laser acceleration (DLA) of electrons in nanophotonic structures is the analog of classical radio-frequency cavity-based particle acceleration but operating in the optical regime and using microfabricated photonic devices. Boundary conditions are chosen such that a structured vacuum results ideally suited to accelerate particles with the help of oscillating electro-magnetic fields. In conventional particle accelerators, these fields lie in the RF to microwave frequency range, while in the DLA case optical fields in the form of pulsed laser beams are being employed. DLA research has recently taken two major steps. The first optical wave-guide-fed DLA chip has been demonstrated. Based on silicon-on-insulator fabrication technology, two optical waveguides, the required laser beam input coupler and the accelerator channel have been incorporated on a single chip [1]. Driven with 1.94 µm central wavelength laser pulses at a peak field strength of 335 MV/m, a peak acceleration gradient of 30.5 MeV/m was demonstrated. In another experiment, active optical transport of electrons through a record-long DLA structure was demonstrated. We have recently demonstrated the concept of alternating phase focusing for the first time at optical frequencies and inside of a nanophotonic channel [2]. In principle, this technique allows us to guide electrons through the sub-micron-wide DLA channel over arbitrarily long distances with minimal particle loss. Active beam control is crucial for any particle accelerator to confine and transport the beam while it is being accelerated. Building from these results, within this year we plan to build an integrated particle accelerator on a chip to accelerate electrons from below 100 keV to 1 MeV. We will report on the experimental progress towards this goal and give an outlook on initial applications in science, radio-biology and as a medical treatment tool. ACHIP is generously funded by the Gordon and Betty Moore Foundation. We acknowledge the contributions of all ACHIP team members. [1] Neil V. Sapra, Ki Youl Yang, Dries Vercruysse, Kenneth J. Leedle, Dylan S. Black, R. Joel England, Logan Su, Rahul Trivedi, Yu Miao, Olav Solgaard, Robert L. Byer, Jelena Vuckovic, On-chip integrated laser-driven particle accelerator, Science 367, (2020), 79 [2] Johannes Illmer, Roy Shiloh, Tomas Chlouba, Peyman Yousefi, Norbert Schönenberger, Uwe Niedermayer, Anna Mittelbach, Peter Hommelhoff, Complex electron phase space control for on-chip laser-driven particle accelerators, manuscript in preparation

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助孟冬采纳,获得10
1秒前
2秒前
2秒前
Fan完成签到,获得积分10
2秒前
失眠元菱完成签到,获得积分10
2秒前
3秒前
yuK完成签到,获得积分10
3秒前
4秒前
迷人的Jack发布了新的文献求助10
4秒前
陈小青发布了新的文献求助10
6秒前
华仔应助SwapExisting采纳,获得10
6秒前
Peiyu发布了新的文献求助10
6秒前
7秒前
7秒前
7秒前
Stove发布了新的文献求助10
8秒前
香蕉觅云应助xuuuuu采纳,获得10
9秒前
不安的大白菜真实的钥匙完成签到,获得积分20
9秒前
zz发布了新的文献求助10
10秒前
虚心橘子完成签到,获得积分10
10秒前
深情安青应助吃饼妹妹采纳,获得10
10秒前
少年完成签到,获得积分10
10秒前
yuC完成签到,获得积分10
11秒前
11秒前
孟冬发布了新的文献求助10
13秒前
ddd发布了新的文献求助10
13秒前
ch发布了新的文献求助10
13秒前
Forever发布了新的文献求助10
13秒前
背后寻真发布了新的文献求助10
13秒前
wanci应助zz采纳,获得10
14秒前
14秒前
lzs发布了新的文献求助10
15秒前
牧木给牧木的求助进行了留言
16秒前
乐乐应助娜行采纳,获得10
16秒前
17秒前
17秒前
城北徐公完成签到,获得积分10
18秒前
专注难敌发布了新的文献求助10
18秒前
ddd完成签到,获得积分10
18秒前
19秒前
高分求助中
The three stars each : the Astrolabes and related texts 1070
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Hieronymi Mercurialis Foroliviensis De arte gymnastica libri sex: In quibus exercitationum omnium vetustarum genera, loca, modi, facultates, & ... exercitationes pertinet diligenter explicatur Hardcover – 26 August 2016 900
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
Sport in der Antike Hardcover – March 1, 2015 500
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2403315
求助须知:如何正确求助?哪些是违规求助? 2102258
关于积分的说明 5304249
捐赠科研通 1829828
什么是DOI,文献DOI怎么找? 911891
版权声明 560458
科研通“疑难数据库(出版商)”最低求助积分说明 487498