Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks

计算机科学 人工智能 规范化(社会学) 模式识别(心理学) 分割 特征(语言学) 理论计算机科学 语言学 哲学 社会学 人类学
作者
Meng-Hao Guo,Zheng-Ning Liu,Tai‐Jiang Mu,Shi‐Min Hu
出处
期刊:Cornell University - arXiv 被引量:30
标识
DOI:10.48550/arxiv.2105.02358
摘要

Attention mechanisms, especially self-attention, have played an increasingly important role in deep feature representation for visual tasks. Self-attention updates the feature at each position by computing a weighted sum of features using pair-wise affinities across all positions to capture the long-range dependency within a single sample. However, self-attention has quadratic complexity and ignores potential correlation between different samples. This paper proposes a novel attention mechanism which we call external attention, based on two external, small, learnable, shared memories, which can be implemented easily by simply using two cascaded linear layers and two normalization layers; it conveniently replaces self-attention in existing popular architectures. External attention has linear complexity and implicitly considers the correlations between all data samples. We further incorporate the multi-head mechanism into external attention to provide an all-MLP architecture, external attention MLP (EAMLP), for image classification. Extensive experiments on image classification, object detection, semantic segmentation, instance segmentation, image generation, and point cloud analysis reveal that our method provides results comparable or superior to the self-attention mechanism and some of its variants, with much lower computational and memory costs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
王娇完成签到 ,获得积分10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
深情安青应助科研通管家采纳,获得30
1秒前
上官若男应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
子车茗应助科研通管家采纳,获得20
1秒前
我是老大应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
DijiaXu应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
2秒前
DijiaXu应助科研通管家采纳,获得10
2秒前
乐乐应助科研通管家采纳,获得200
2秒前
香蕉觅云应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
yiding完成签到 ,获得积分10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得50
2秒前
2秒前
ding应助Yang_728采纳,获得10
3秒前
义气的友容完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
lujiexu完成签到,获得积分10
5秒前
5秒前
5秒前
克林完成签到,获得积分20
5秒前
英姑应助zhou采纳,获得10
7秒前
Overtone发布了新的文献求助10
7秒前
科研通AI2S应助dablack采纳,获得10
7秒前
阳光映秋完成签到,获得积分10
8秒前
9秒前
9秒前
慕青应助暖呀采纳,获得10
9秒前
10秒前
栖木完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5097188
求助须知:如何正确求助?哪些是违规求助? 4309756
关于积分的说明 13428112
捐赠科研通 4137185
什么是DOI,文献DOI怎么找? 2266508
邀请新用户注册赠送积分活动 1269609
关于科研通互助平台的介绍 1205917