Prediction of soft tissue sarcoma response to radiotherapy using longitudinal diffusion MRI and a deep neural network with generative adversarial network‐based data augmentation

软组织肉瘤 放射治疗 人工智能 计算机科学 人工神经网络 肉瘤 核医学 医学 放射科 机器学习 软组织 病理
作者
Yu Gao,Vahid Ghodrati,Anusha Kalbasi,Jie Fu,Dan Ruan,Minsong Cao,Chenyang Wang,Fritz C. Eilber,Nicholas M. Bernthal,Susan V. Bukata,Sarah Dry,Scott D. Nelson,Mitchell Kamrava,John H. Lewis,Daniel A. Low,Michael L. Steinberg,Peng Hu,Yingli Yang
出处
期刊:Medical Physics [Wiley]
卷期号:48 (6): 3262-3372 被引量:16
标识
DOI:10.1002/mp.14897
摘要

Purpose The goal of this study was to predict soft tissue sarcoma response to radiotherapy (RT) using longitudinal diffusion‐weighted MRI (DWI). A novel deep‐learning prediction framework along with generative adversarial network (GAN)‐based data augmentation was investigated for the response prediction. Methods Thirty soft tissue sarcoma patients who were treated with five‐fraction hypofractionated radiation therapy (RT, 6Gy×5) underwent diffusion‐weighted MRI three times throughout the RT course using an MR‐guided radiotherapy system. Pathologic treatment effect (TE) scores, ranging from 0‐100%, were obtained from the post‐RT surgical specimen as a surrogate of patient treatment response. Patients were divided into three classes based on the TE score (TE ≤ 20%, 20% < TE < 90%, TE ≥ 90%). Apparent diffusion coefficient (ADC) maps of the tumor from the three time points were combined as 3‐channel images. An auxiliary classifier generative adversarial network (ACGAN) was trained on 20 patients to augment the data size. A total of 15,000 synthetic images were generated for each class. A prediction model based on a previously described VGG‐19 network was trained using the synthesized data, validated on five unseen validation patients, and tested on the remaining five test patients. The entire process was repeated seven times, each time shuffling the training, validation, and testing datasets such that each patient was tested at least once during the independent test stage. Prediction performance for slice‐based prediction and patient‐based prediction was evaluated. Results The average training and validation accuracies were 86.5% ± 1.6% and 84.8% ± 1.8%, respectively, indicating that the generated samples were good representations of the original patient data. Among the seven rounds of testing, slice by slice prediction accuracy ranged from 81.6% to 86.8%. The overall accuracy of the independent test sets was 83.3%. For patient‐based prediction, 80% was achieved in one round and 100% was achieved in the remaining six rounds. The mean accuracy was 97.1%. Conclusion This study demonstrated the potential to use deep learning to predict the pathologic treatment effect from longitudinal DWI. Accuracies of 83.3% and 97.1% were achieved on independent test sets for slice‐based and patient‐based prediction respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yibo完成签到,获得积分10
1秒前
yiner520发布了新的文献求助30
1秒前
独特的豌豆完成签到,获得积分10
1秒前
动听草莓完成签到,获得积分10
1秒前
71Qi完成签到,获得积分10
2秒前
2秒前
曾经富完成签到,获得积分10
2秒前
12完成签到,获得积分20
3秒前
南巷酒肆完成签到,获得积分10
4秒前
爱笑的访梦完成签到,获得积分10
5秒前
搜集达人应助Zzzzz采纳,获得10
6秒前
自然秋柳完成签到 ,获得积分10
7秒前
不知道完成签到,获得积分10
7秒前
星辰完成签到,获得积分10
7秒前
henrik发布了新的文献求助10
7秒前
粗暴的坤完成签到 ,获得积分10
7秒前
科研通AI5应助听话的白易采纳,获得10
7秒前
斯文败类应助FXQ123_范采纳,获得10
7秒前
7秒前
cm完成签到,获得积分10
7秒前
FSF完成签到,获得积分10
7秒前
8秒前
lucky完成签到,获得积分10
8秒前
cookie完成签到,获得积分10
8秒前
河狸上校完成签到,获得积分10
8秒前
烂漫明轩完成签到,获得积分10
9秒前
开心寄松完成签到,获得积分10
9秒前
shero应助池不胖采纳,获得10
10秒前
蒋不惜完成签到,获得积分10
10秒前
cm发布了新的文献求助10
10秒前
漂亮的访冬完成签到,获得积分10
11秒前
Whisper完成签到 ,获得积分10
11秒前
眼睛大蹇完成签到,获得积分10
11秒前
英姑应助liu采纳,获得10
12秒前
茫123456完成签到,获得积分10
12秒前
程艳完成签到 ,获得积分10
12秒前
Andy完成签到,获得积分10
12秒前
bkagyin应助强仔采纳,获得10
12秒前
cookie发布了新的文献求助10
12秒前
勤劳冰烟完成签到,获得积分10
13秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3820127
求助须知:如何正确求助?哪些是违规求助? 3363026
关于积分的说明 10420351
捐赠科研通 3081361
什么是DOI,文献DOI怎么找? 1695069
邀请新用户注册赠送积分活动 814901
科研通“疑难数据库(出版商)”最低求助积分说明 768547