Elitist non-dominated sorting Harris hawks optimization: Framework and developments for multi-objective problems

数学优化 分类 多目标优化 帕累托原理 排名(信息检索) 计算机科学 约束(计算机辅助设计) 数学 领域(数学) 算法 人工智能 纯数学 几何学
作者
Pradeep Jangir,Ali Asghar Heidari,Huiling Chen
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:186: 115747-115747 被引量:57
标识
DOI:10.1016/j.eswa.2021.115747
摘要

• A novel multi-objective non-sorted Harris Hawks Optimizer (NSHHO) is proposed. • A non-dominated ranking based on crowding distance mechanism is applied to HHO. • A total of 46 case studies is used to check the performance of NSHHO. • NSHHO is compared with NSGA-II, MOEA/D, and MOPSO quantitatively. This paper proposed a novel multi-objective non-sorted Harris Hawks Optimizer (NSHHO) part of the recently developed Harris Hawks Optimizer (HHO) based on an elitist non dominated sorting mechanism. The same Harris Hawks Optimizer methodology was issued for converging towards optimum solutions in a multiple-objective criterion search space. For obtained well-distributed Pareto optimal front and their solution has better coverage. However, a non-dominated ranking with the crowding distance strategy is applied to HHO. To check the performance of NSHHO, a total of 46 case studies include 13 un-constrained, 11 constrained, and 22 real-world design multiple-objective highly nonlinear constraint problems. The obtained results of the proposed NSHHO are compared with NSGA-II, MOPSO and MOEA/D, quantitatively, and different performance metrics are compared qualitatively, which represents the advantage of the newly proposed NSHHO algorithm in solving the unconstrained, constrained, and real-world problems with different linear, nonlinear, continuous and discrete characteristics based Pareto front. We think the proposed NSHHO can be viral as an effective multi-objective optimizer within the field. The open-source software of NSHHO is publicly provided at https://codeocean.com/capsule/2034037/tree and https://aliasgharheidari.com/HHO.html .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星星点灯完成签到,获得积分10
刚刚
2秒前
云歇雨住完成签到,获得积分10
2秒前
Yogu完成签到,获得积分10
3秒前
嘻嘻哈哈发布了新的文献求助10
3秒前
科目三应助LYZSh采纳,获得10
3秒前
nice1025完成签到,获得积分10
3秒前
4秒前
6秒前
7秒前
燕子完成签到 ,获得积分10
7秒前
bkagyin应助孤岛采纳,获得10
7秒前
7秒前
欢呼的未来完成签到 ,获得积分10
9秒前
bkagyin应助李逸玄采纳,获得10
9秒前
蒋良心发布了新的文献求助10
11秒前
11秒前
12秒前
13秒前
小天才应助嘻嘻哈哈采纳,获得10
13秒前
喜悦的皮卡丘完成签到,获得积分10
14秒前
14秒前
QY关闭了QY文献求助
15秒前
15秒前
15秒前
kk子完成签到,获得积分10
16秒前
万能图书馆应助安生生采纳,获得10
16秒前
16秒前
16秒前
LYZSh发布了新的文献求助10
18秒前
rerwre应助无心的薄荷采纳,获得10
19秒前
HN洪完成签到,获得积分10
20秒前
九门提督发布了新的文献求助10
20秒前
20秒前
研友_ZG4ml8发布了新的文献求助10
21秒前
21秒前
随性i完成签到,获得积分10
21秒前
CompJIN发布了新的文献求助10
22秒前
23秒前
新手菜鸟完成签到,获得积分10
23秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
ASHP Injectable Drug Information 2025 Edition 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4400011
求助须知:如何正确求助?哪些是违规求助? 3887770
关于积分的说明 12100246
捐赠科研通 3532021
什么是DOI,文献DOI怎么找? 1938232
邀请新用户注册赠送积分活动 979158
科研通“疑难数据库(出版商)”最低求助积分说明 876402