Semi-supervised GAN-based Radiomics Model for Data Augmentation in Breast Ultrasound Mass Classification

人工智能 卷积神经网络 计算机科学 乳房成像 乳腺超声检查 深度学习 模式识别(心理学) 无线电技术 超声波 人工神经网络 乳腺癌 乳腺摄影术 机器学习 放射科 医学 内科学 癌症
作者
Ting Pang,Jeannie Hsiu Ding Wong,Wei Lin Ng,Chee Seng Chan
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:203: 106018-106018 被引量:106
标识
DOI:10.1016/j.cmpb.2021.106018
摘要

The capability of deep learning radiomics (DLR) to extract high-level medical imaging features has promoted the use of computer-aided diagnosis of breast mass detected on ultrasound. Recently, generative adversarial network (GAN) has aided in tackling a general issue in DLR, i.e., obtaining a sufficient number of medical images. However, GAN methods require a pair of input and labeled images, which require an exhaustive human annotation process that is very time-consuming. The aim of this paper is to develop a radiomics model based on a semi-supervised GAN method to perform data augmentation in breast ultrasound images. A total of 1447 ultrasound images, including 767 benign masses and 680 malignant masses were acquired from a tertiary hospital. A semi-supervised GAN model was developed to augment the breast ultrasound images. The synthesized images were subsequently used to classify breast masses using a convolutional neural network (CNN). The model was validated using a 5-fold cross-validation method. The proposed GAN architecture generated high-quality breast ultrasound images, verified by two experienced radiologists. The improved performance of semi-supervised learning increased the quality of the synthetic data produced in comparison to the baseline method. We achieved more accurate breast mass classification results (accuracy 90.41%, sensitivity 87.94%, specificity 85.86%) with our synthetic data augmentation compared to other state-of-the-art methods. The proposed radiomics model has demonstrated a promising potential to synthesize and classify breast masses on ultrasound in a semi-supervised manner.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笙笙发布了新的文献求助10
1秒前
程勋航完成签到,获得积分10
3秒前
天真千凡关注了科研通微信公众号
6秒前
首席或雪月完成签到,获得积分10
8秒前
9秒前
花开半夏完成签到,获得积分10
10秒前
ccCherub完成签到,获得积分10
12秒前
Pretrial完成签到 ,获得积分10
15秒前
16秒前
16秒前
桃子爱学习完成签到,获得积分10
17秒前
天真千凡发布了新的文献求助10
20秒前
HopeStar完成签到,获得积分10
20秒前
zbc_完成签到,获得积分10
21秒前
科研通AI5应助烂漫的寻冬采纳,获得30
26秒前
Orange应助坦率的傲芙采纳,获得10
30秒前
科研通AI5应助cozy采纳,获得10
30秒前
小二郎应助di采纳,获得10
32秒前
QAQ发布了新的文献求助10
32秒前
飞快的雅青完成签到 ,获得积分10
34秒前
草上飞完成签到 ,获得积分10
35秒前
36秒前
qwer完成签到 ,获得积分10
37秒前
QAQ完成签到,获得积分10
41秒前
41秒前
41秒前
李健应助和谐诗柳采纳,获得10
43秒前
科目三应助科研通管家采纳,获得10
44秒前
研友_VZG7GZ应助科研通管家采纳,获得10
44秒前
英俊的铭应助科研通管家采纳,获得10
44秒前
顾矜应助科研通管家采纳,获得10
44秒前
彭于晏应助科研通管家采纳,获得10
44秒前
科研通AI2S应助科研通管家采纳,获得10
44秒前
44秒前
CodeCraft应助科研通管家采纳,获得10
44秒前
打打应助科研通管家采纳,获得10
44秒前
Ava应助科研通管家采纳,获得10
44秒前
sutharsons应助科研通管家采纳,获得100
45秒前
大个应助科研通管家采纳,获得10
45秒前
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776521
求助须知:如何正确求助?哪些是违规求助? 3322010
关于积分的说明 10208485
捐赠科研通 3037297
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797596
科研通“疑难数据库(出版商)”最低求助积分说明 757872