Spatial-Temporal Graph ODE Networks for Traffic Flow Forecasting

计算机科学 颂歌 理论计算机科学 图形 数学 应用数学
作者
Zheng Fang,Qingqing Long,Guojie Song,Kunqing Xie
出处
期刊:Cornell University - arXiv 卷期号:: 364-373 被引量:298
标识
DOI:10.1145/3447548.3467430
摘要

Spatial-temporal forecasting has attracted tremendous attention in a wide range of applications, and traffic flow prediction is a canonical and typical example. The complex and long-range spatial-temporal correlations of traffic flow bring it to a most intractable challenge. Existing works typically utilize shallow graph convolution networks (GNNs) and temporal extracting modules to model spatial and temporal dependencies respectively. However, the representation ability of such models is limited due to: (1) shallow GNNs are incapable to capture long-range spatial correlations, (2) only spatial connections are considered and a mass of semantic connections are ignored, which are of great importance for a comprehensive understanding of traffic networks. To this end, we propose Spatial-Temporal Graph Ordinary Differential Equation Networks (STGODE). Specifically, we capture spatial-temporal dynamics through a tensor-based ordinary differential equation (ODE), as a result, deeper networks can be constructed and spatial-temporal features are utilized synchronously. To understand the network more comprehensively, semantical adjacency matrix is considered in our model, and a well-design temporal dialated convolution structure is used to capture long term temporal dependencies. We evaluate our model on multiple real-world traffic datasets and superior performance is achieved over state-of-the-art baselines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
Sylvia发布了新的文献求助10
2秒前
izumi发布了新的文献求助10
4秒前
圆滚滚的大肥猫关注了科研通微信公众号
5秒前
虫二发布了新的文献求助10
5秒前
打打应助勤恳的小笼包采纳,获得10
6秒前
科研助手6应助xxx采纳,获得10
7秒前
8秒前
yes完成签到 ,获得积分10
8秒前
奋斗的友儿完成签到,获得积分10
9秒前
花生完成签到 ,获得积分10
14秒前
15秒前
15秒前
ewyzero关注了科研通微信公众号
16秒前
BOYA完成签到,获得积分10
19秒前
zzzzz完成签到,获得积分10
22秒前
24秒前
缤月完成签到,获得积分10
26秒前
英姑应助火火火采纳,获得30
28秒前
琦琦发布了新的文献求助10
28秒前
28秒前
小二郎应助Wonder罗采纳,获得10
28秒前
慕青应助fandan采纳,获得10
29秒前
illuminate完成签到 ,获得积分10
32秒前
33秒前
KK发布了新的文献求助10
33秒前
Owen应助mhs采纳,获得10
35秒前
DreamMaker完成签到,获得积分10
37秒前
我是老大应助小人物采纳,获得10
38秒前
39秒前
SYMI发布了新的文献求助10
39秒前
风车车发布了新的文献求助10
40秒前
45秒前
小雅完成签到 ,获得积分10
45秒前
chen完成签到,获得积分10
46秒前
风车车完成签到,获得积分10
46秒前
琦琦完成签到,获得积分10
47秒前
47秒前
夏日重现完成签到,获得积分10
47秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
System of systems: When services and products become indistinguishable 300
How to carry out the process of manufacturing servitization: A case study of the red collar group 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3812524
求助须知:如何正确求助?哪些是违规求助? 3357072
关于积分的说明 10385087
捐赠科研通 3074263
什么是DOI,文献DOI怎么找? 1688684
邀请新用户注册赠送积分活动 812320
科研通“疑难数据库(出版商)”最低求助积分说明 766986