叶面积指数
缩小尺度
遥感
图像分辨率
时间分辨率
土地覆盖
环境科学
比例(比率)
云量
领域(数学)
航程(航空)
计算机科学
气候变化
云计算
地质学
土地利用
地理
数学
地图学
物理
生态学
工程类
操作系统
土木工程
人工智能
复合材料
材料科学
纯数学
海洋学
生物
量子力学
作者
Rasmus Houborg,Matthew F. McCabe,Feng Gao
标识
DOI:10.1109/igarss.2015.7326528
摘要
This paper presents a flexible tool for spatio-temporal enhancement of coarse resolution leaf area index (LAI) products, which is readily adaptable to different land cover types, landscape heterogeneities and cloud cover conditions. The framework integrates a rule-based regression tree approach for estimating Landsat-scale LAI from existing 1 km resolution LAI products, and the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) to intelligently interpolate the downscaled LAI between Landsat acquisitions. Comparisons against in-situ records of LAI measured over corn and soybean highlights its utility for resolving sub-field LAI dynamics occurring over a range of plant development stages.
科研通智能强力驱动
Strongly Powered by AbleSci AI