生物降解
聚碳酸酯
聚合物
化学
有机化学
生物高聚物
可生物降解聚合物
结晶度
高分子化学
双酚A
材料科学
化学工程
环氧树脂
结晶学
工程类
作者
Trishul Artham,Mukesh Doble
标识
DOI:10.1002/mabi.200700106
摘要
Polycarbonate is one of the most widely used engineering plastics because of its superior physical, chemical, and mechanical properties. Understanding the biodegradation of this polymer is of great importance to answer the increasing problems in waste management of this polymer. Aliphatic polycarbonates are known to biodegrade either through the action of pure enzymes or by bacterial whole cells. Very little information is available that deals with the biodegradation of aromatic polycarbonates. Biodegradation is governed by different factors that include polymer characteristics, type of organism, and nature of pretreatment. The polymer characteristics such as its mobility, tacticity, crystallinity, molecular weight, the type of functional groups and substituents present in its structure, and plasticizers or additives added to the polymer all play an important role in its degradation. The carbonate bond in aliphatic polycarbonates is facile and hence this polymer is easily biodegradable. On the other hand, bisphenol A polycarbonate contains benzene rings and quaternary carbon atoms which form bulky and stiff chains that enhance rigidity. Even though this polycarbonate is amorphous in nature because of considerable free volume, it is non-biodegradable since the carbonate bond is inaccessible to enzymes because of the presence of bulky phenyl groups on either side. In order to facilitate the biodegradation of polymers few pretreatment techniques which include photo-oxidation, gamma-irradiation, or use of chemicals have been tested. Addition of biosurfactants to improve the interaction between the polymer and the microorganisms, and blending with natural or synthetic polymers that degrade easily, can also enhance the biodegradation.
科研通智能强力驱动
Strongly Powered by AbleSci AI