Spatial Epidemiology: Current Approaches and Future Challenges

环境流行病学 空间流行病学 地理空间分析 地理信息系统 社会经济地位 公共卫生 环境数据 疾病 环境卫生 地理 空间分析 数据科学 混淆 流行病学 计算机科学 医学 人口 地图学 生态学 生物 护理部 病理 内科学 遥感
作者
Paul Elliott,Daniel Wartenberg
出处
期刊:Environmental Health Perspectives [National Institute of Environmental Health Sciences]
卷期号:112 (9): 998-1006 被引量:748
标识
DOI:10.1289/ehp.6735
摘要

Spatial epidemiology is the description and analysis of geographic variations in disease with respect to demographic, environmental, behavioral, socioeconomic, genetic, and infectious risk factors. We focus on small-area analyses, encompassing disease mapping, geographic correlation studies, disease clusters, and clustering. Advances in geographic information systems, statistical methodology, and availability of high-resolution, geographically referenced health and environmental quality data have created unprecedented new opportunities to investigate environmental and other factors in explaining local geographic variations in disease. They also present new challenges. Problems include the large random component that may predominate disease rates across small areas. Though this can be dealt with appropriately using Bayesian statistics to provide smooth estimates of disease risks, sensitivity to detect areas at high risk is limited when expected numbers of cases are small. Potential biases and confounding, particularly due to socioeconomic factors, and a detailed understanding of data quality are important. Data errors can result in large apparent disease excess in a locality. Disease cluster reports often arise nonsystematically because of media, physician, or public concern. One ready means of investigating such concerns is the replication of analyses in different areas based on routine data, as is done in the United Kingdom through the Small Area Health Statistics Unit (and increasingly in other European countries, e.g., through the European Health and Environment Information System collaboration). In the future, developments in exposure modeling and mapping, enhanced study designs, and new methods of surveillance of large health databases promise to improve our ability to understand the complex relationships of environment to health.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助afrex采纳,获得10
刚刚
1秒前
Doctor-C完成签到,获得积分10
2秒前
3秒前
6秒前
CP发布了新的文献求助10
6秒前
123456发布了新的文献求助20
6秒前
舒服的如蓉完成签到,获得积分10
6秒前
7秒前
楼醉山完成签到,获得积分10
7秒前
8R60d8应助科研通管家采纳,获得10
9秒前
孙燕应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
9秒前
领导范儿应助科研通管家采纳,获得10
9秒前
echo完成签到 ,获得积分10
10秒前
木木发布了新的文献求助20
10秒前
小蘑菇应助小巧的柠檬采纳,获得10
11秒前
阿斯披粼完成签到,获得积分10
12秒前
难过小懒虫完成签到,获得积分10
20秒前
20秒前
23秒前
24秒前
25秒前
俊俊坨完成签到,获得积分10
25秒前
善学以致用应助peekaboo采纳,获得10
25秒前
今后应助平淡纲采纳,获得10
25秒前
CP完成签到,获得积分10
25秒前
mnliao完成签到,获得积分10
26秒前
顺顺发布了新的文献求助10
28秒前
29秒前
29秒前
灰灰完成签到 ,获得积分10
30秒前
狗头发布了新的文献求助10
33秒前
33秒前
36秒前
afrex发布了新的文献求助10
38秒前
坚强的夏瑶完成签到,获得积分10
38秒前
Ecokarster完成签到,获得积分10
40秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1155
Genomic signature of non-random mating in human complex traits 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4107861
求助须知:如何正确求助?哪些是违规求助? 3645839
关于积分的说明 11548862
捐赠科研通 3352097
什么是DOI,文献DOI怎么找? 1841832
邀请新用户注册赠送积分活动 908297
科研通“疑难数据库(出版商)”最低求助积分说明 825425