材料科学
合金
可塑性
硼化物
热稳定性
产量(工程)
相(物质)
热的
难熔金属
金属
工作(物理)
硼
耐火材料(行星科学)
压力(语言学)
结构稳定性
复合材料
冶金
微观结构
环境压力
降级(电信)
化学工程
纳米技术
作者
Bo Sun,Bingjie Wang,Zhe Jia,Ligang Sun,Juan Kuang,Qianqian Wang,Gang Sha,Xiubing Liang,Baolong Shen
标识
DOI:10.1038/s41467-025-66617-8
摘要
Developing next-generation hypersonic vehicles necessitates structural materials capable of withstanding extreme thermal gradients. However, conventional alloys usually sacrifice room-temperature plasticity for breakthroughs in high-temperature strength. Here, we report a (WTaV)90B10 refractory medium-entropy alloy (RMEA) that overcomes this trade-off, showing decent plasticity of ~6% at ambient temperature, high yield strength of 650 MPa at 1873 K and 242 MPa at 2073 K, and excellent thermal stability up to ~0.7 Tm. The RMEA comprises a BCC metallic solid solution and a boride phase. Interfacial segregation of boron atoms generates gradient-ordering phase boundaries (GOPBs), enhancing stress transfer and plastic compatibility. Strong interfacial bonding of GOPBs and the inherent stability of the dual-phase structure further enable remarkable resistance to ultrahigh-temperature softening. At 2073 K, GOPBs evolve into fully coherent interfaces, ensuring exceptional thermal stability at ~0.7 Tm. This work demonstrates a gradient-ordering strategy for achieving strength-plasticity synergy from ambient to ultrahigh temperatures.
科研通智能强力驱动
Strongly Powered by AbleSci AI