化学
共价键
选择性
法拉第效率
吸附
电荷(物理)
组合化学
产量(工程)
金属有机骨架
共价有机骨架
多孔性
电化学
金属
工作(物理)
纳米技术
电极
电荷密度
计算化学
电催化剂
化学物理
配体(生物化学)
化学工程
光化学
多孔介质
动力控制
合理设计
无机化学
催化作用
氧化还原
协同催化
过渡金属
作者
Tao Zheng,Wei Li,Yu-Ze Liu,Jia-Yi Liu,Ying-Xin Qiao,Wen-Chao Huang,Shu-En He,Lu-Qi Qiu,Ze-Yu Zhang,Zhen Li,Feng Wang,Qing-Xiao Tong,Jing-Xin Jian
摘要
Metalated covalent organic frameworks (M-COFs) hold promise for CO2 capture and electrocatalytic conversion with their tunable cavities, well-defined metal centers, and extended charge delocalization. However, the systematic impact of the framework architecture on the CO2 electroreduction selectivity remains underexplored. Herein, we report a series of cobalt-porphyrin COFs, namely, Co-TBCOF, Co-TTCOF, and Co-TQCOF, with enlarged cavity apertures from 2.5 to 3.2 and 3.8 nm by extending linear dialdehyde linkers. Experiment and computation confirm increased interlayer spacing from 3.64 to 4.01 and 4.81 Å, enhancing the CO2 adsorption capacity. The structural expansion also promotes charge delocalization, increasing the electropositivity of the Co sites and strengthening the CO2 activation. During electrocatalytic CO2 reduction, the CO Faradaic efficiency rises from 84.3% (Co-TBCOF) and 78.2% (Co-TTCOF) to 93.3% (Co-TQCOF) in H-cell. In situ ATR-SEIRAS and theoretical calculations reveal that the smaller-pore COFs (Co-TBCOF and Co-TTCOF) stabilize both active terminally bound *CO (τ-CO) and an inactive interlayer-bridged *CO (η2-CO) that hinders desorption. In contrast, the larger interlayer spacing in Co-TQCOF prevents stable η2-CO formation, enabling highly selective CO production solely via the τ-CO pathway. This work demonstrates that linker-mediated control over cavity size, stacking, and charge distribution in M-COFs enhances CO2 capture and conversion, offering design insights for molecularly defined porous electrocatalysts.
科研通智能强力驱动
Strongly Powered by AbleSci AI