Software-aided approach to investigate peptide structure and metabolic susceptibility of amide bonds in peptide drugs based on high resolution mass spectrometry

化学 肽键 胰蛋白酶 蛋白质水解 蛋白水解酶 蛋白酵素 蛋白酶 肽序列 氨基酸 内肽酶 组合化学 肽合成 生物化学 基因
作者
Tatiana Radchenko,Andreas Brink,Yves Siegrist,Christopher J. Kochansky,Alison Bateman,Fabien Fontaine,Luca Morettoni,Ismael Zamora
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:12 (11): e0186461-e0186461 被引量:15
标识
DOI:10.1371/journal.pone.0186461
摘要

Interest in using peptide molecules as therapeutic agents due to high selectivity and efficacy is increasing within the pharmaceutical industry. However, most peptide-derived drugs cannot be administered orally because of low bioavailability and instability in the gastrointestinal tract due to protease activity. Therefore, structural modifications peptides are required to improve their stability. For this purpose, several in-silico software tools have been developed such as PeptideCutter or PoPS, which aim to predict peptide cleavage sites for different proteases. Moreover, several databases exist where this information is collected and stored from public sources such as MEROPS and ExPASy ENZYME databases. These tools can help design a peptide drug with increased stability against proteolysis, though they are limited to natural amino acids or cannot process cyclic peptides, for example. We worked to develop a new methodology to analyze peptide structure and amide bond metabolic stability based on the peptide structure (linear/cyclic, natural/unnatural amino acids). This approach used liquid chromatography / high resolution, mass spectrometry to obtain the analytical data from in vitro incubations. We collected experimental data for a set (linear/cyclic, natural/unnatural amino acids) of fourteen peptide drugs and four substrate peptides incubated with different proteolytic media: trypsin, chymotrypsin, pepsin, pancreatic elastase, dipeptidyl peptidase-4 and neprilysin. Mass spectrometry data was analyzed to find metabolites and determine their structures, then all the results were stored in a chemically aware manner, which allows us to compute the peptide bond susceptibility by using a frequency analysis of the metabolic-liable bonds. In total 132 metabolites were found from the various in vitro conditions tested resulting in 77 distinct cleavage sites. The most frequent observed cleavage sites agreed with those reported in the literature. The main advantages of the developed approach are the abilities to elucidate metabolite structure of cyclic peptides and those containing unnatural amino acids, store processed information in a searchable format within a database leading to frequency analysis of the labile sites for the analyzed peptides. The presented algorithm may be useful to optimize peptide drug properties with regards to cleavage sites, stability, metabolism and degradation products in drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
喜悦小猫咪完成签到,获得积分10
1秒前
善学以致用应助罗浩采纳,获得10
1秒前
mumufan完成签到,获得积分10
2秒前
五档张诊人完成签到,获得积分10
2秒前
石龙子发布了新的文献求助10
2秒前
WJN发布了新的文献求助10
2秒前
完美世界应助weiweiwu12采纳,获得10
2秒前
3秒前
3秒前
3秒前
4秒前
4秒前
幽默亦凝发布了新的文献求助10
4秒前
4秒前
4秒前
4秒前
乐观寻绿完成签到,获得积分10
5秒前
NexusExplorer应助快乐难敌采纳,获得10
5秒前
zhong完成签到,获得积分10
6秒前
白白发布了新的文献求助10
7秒前
7秒前
曾经的借过完成签到,获得积分10
7秒前
7秒前
李鹏飞发布了新的文献求助10
7秒前
8秒前
共渡发布了新的文献求助10
8秒前
8秒前
tangli发布了新的文献求助30
8秒前
彭于晏应助落寞砖家采纳,获得10
8秒前
vergegung完成签到,获得积分20
8秒前
ALLUDO发布了新的文献求助10
9秒前
9秒前
Mister.WangK发布了新的文献求助10
9秒前
坚强的铅笔完成签到 ,获得积分10
10秒前
司空踏歌应助白白采纳,获得10
11秒前
ww发布了新的文献求助10
11秒前
12秒前
愉快竺应助felix采纳,获得50
13秒前
13秒前
zyt完成签到,获得积分10
13秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816802
求助须知:如何正确求助?哪些是违规求助? 3360159
关于积分的说明 10407045
捐赠科研通 3078172
什么是DOI,文献DOI怎么找? 1690613
邀请新用户注册赠送积分活动 813964
科研通“疑难数据库(出版商)”最低求助积分说明 767910