Automated Radiographic Report Generation Purely on Transformer: A Multicriteria Supervised Approach

计算机科学 判别式 人工智能 变压器 编码器 判决 加权 自然语言处理 模式识别(心理学) 机器学习 量子力学 医学 操作系统 物理 放射科 电压
作者
Zhanyu Wang,Hongwei Han,Lei Wang,Xiu Li,Luping Zhou
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:41 (10): 2803-2813 被引量:55
标识
DOI:10.1109/tmi.2022.3171661
摘要

Automated radiographic report generation is challenging in at least two aspects. First, medical images are very similar to each other and the visual differences of clinic importance are often fine-grained. Second, the disease-related words may be submerged by many similar sentences describing the common content of the images, causing the abnormal to be misinterpreted as the normal in the worst case. To tackle these challenges, this paper proposes a pure transformer-based framework to jointly enforce better visual-textual alignment, multi-label diagnostic classification, and word importance weighting, to facilitate report generation. To the best of our knowledge, this is the first pure transformer-based framework for medical report generation, which enjoys the capacity of transformer in learning long range dependencies for both image regions and sentence words. Specifically, for the first challenge, we design a novel mechanism to embed an auxiliary image-text matching objective into the transformer's encoder-decoder structure, so that better correlated image and text features could be learned to help a report to discriminate similar images. For the second challenge, we integrate an additional multi-label classification task into our framework to guide the model in making correct diagnostic predictions. Also, a term-weighting scheme is proposed to reflect the importance of words for training so that our model would not miss key discriminative information. Our work achieves promising performance over the state-of-the-arts on two benchmark datasets, including the largest dataset MIMIC-CXR.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
4秒前
热心的巧克力完成签到,获得积分10
6秒前
dkswy完成签到,获得积分10
7秒前
7秒前
田様应助畅快的含双采纳,获得10
9秒前
9秒前
Crystal发布了新的文献求助10
10秒前
记得接电话完成签到,获得积分10
10秒前
Hello应助小羊佳佳采纳,获得10
11秒前
Yan应助solitude采纳,获得10
11秒前
小熊枕头发布了新的文献求助10
11秒前
11秒前
xip完成签到,获得积分10
12秒前
pwy完成签到,获得积分10
14秒前
15秒前
李爱国应助科研通管家采纳,获得50
16秒前
16秒前
16秒前
打打应助科研通管家采纳,获得10
17秒前
英俊的铭应助科研通管家采纳,获得20
17秒前
慕青应助科研通管家采纳,获得10
17秒前
斯文败类应助科研通管家采纳,获得10
17秒前
WHM完成签到,获得积分10
17秒前
优pp完成签到 ,获得积分10
19秒前
啊哭应助热心的巧克力采纳,获得10
19秒前
科研通AI2S应助xcc采纳,获得10
19秒前
20秒前
科研通AI5应助梁世秀采纳,获得10
20秒前
21秒前
大力沛萍发布了新的文献求助10
23秒前
上官若男应助高雪采纳,获得10
23秒前
Akim应助chen采纳,获得10
25秒前
pinecone发布了新的文献求助10
25秒前
solitude完成签到,获得积分10
27秒前
28秒前
29秒前
健康的妙菱完成签到,获得积分10
30秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4479616
求助须知:如何正确求助?哪些是违规求助? 3936982
关于积分的说明 12213490
捐赠科研通 3591701
什么是DOI,文献DOI怎么找? 1975162
邀请新用户注册赠送积分活动 1012407
科研通“疑难数据库(出版商)”最低求助积分说明 905660